3.044 MATERIALS PROCESSING

LECTURE 16

Navier-Stokes Equation (1-D):

$$
\begin{aligned}
\frac{\partial v_{x}}{\partial t} & =\nu \frac{\partial^{2} v_{x}}{\partial y^{2}}-\frac{1}{\rho} \frac{\partial P}{\partial x}+\frac{F_{x}}{\rho} \\
\underbrace{\rho \frac{\partial v_{x}}{\partial t}}_{\text {Inertial Force } \frac{k g m}{s^{2}} \frac{1}{m^{3}}} & =\underbrace{\mu \frac{\partial^{2} v_{x}}{\partial y^{2}}}_{\text {Viscous Force }}-\underbrace{\frac{\partial P}{\partial x}}_{\text {Pressure Force }}+\underbrace{F_{x}}_{\text {Body Force } \frac{N}{m^{3}}}
\end{aligned}
$$

Simplest Case:

$$
\rho \frac{\partial v_{x}}{\partial t}=\mu \frac{\partial^{2} v_{x}}{\partial y^{2}}
$$

Non-Dimensional Length:

$$
\begin{aligned}
& X=\frac{x}{L}, \text { where } L=\frac{V}{A} \\
& Y=\frac{y}{L}
\end{aligned}
$$

Non-Dimensional Time:

$$
\tau=t \frac{V_{0}}{L}
$$

Velocity:

$$
\begin{aligned}
V_{x} & =\frac{v_{x}}{v_{0}} \\
\frac{\partial v_{x}}{\partial t}=\frac{\partial v_{x}}{\partial \tau} \frac{\partial \tau}{\partial t} & =\frac{v_{0}}{L} \frac{\partial v_{x}}{\partial \tau}=\frac{v_{0}}{L} \frac{\partial V_{x}}{\partial \tau} \frac{\partial v_{x}}{\partial V_{x}}=\frac{v_{0}^{2}}{L} \frac{\partial V_{x}}{\partial \tau} \\
\frac{\partial^{2} v_{x}}{\partial y^{2}}=v_{0} \frac{\partial^{2} V_{x}}{\partial y^{2}} & =\frac{v_{0}}{L^{2}} \frac{\partial^{2} V_{x}}{\partial Y^{2}} \\
\rho \frac{v_{0}^{2}}{L} \frac{\partial V_{x}}{\partial \tau} & =\mu \frac{v_{0}}{L^{2}} \frac{\partial^{2} V_{x}}{\partial Y^{2}}
\end{aligned}
$$

$$
\frac{\partial V_{x}}{\partial \tau}=\left(\frac{\mu}{\rho L v_{0}}\right) \frac{\partial^{2} V_{x}}{\partial Y^{2}}
$$

Reynold's Number: $\quad \operatorname{Re}=\frac{\rho L v_{0}}{\mu}=\frac{\text { inertial force }}{\text { viscous force }}$

Flow in a Tube:

Geometry	Critical Re
channel	~ 1000
tube	~ 2100
1 free surface (e.g. falling film)	~ 20

Below $R e^{\text {crit }}$: definitely laminar
Above $R e^{\text {crit }}$: might be turbulent, needs perturbation

Kinetic Force:

$$
\begin{aligned}
& F_{k}=\int \tau d A \\
& F_{k}=\Delta P \pi R^{2}
\end{aligned}
$$

What if Flow is Turbulent?
"Plug Flow":

Generalized Drag Force:

How do you use \mathbf{F}_{k} ?

$$
\left(P_{1}-P_{2}\right) \pi R^{2}=f A K
$$

\Rightarrow Provides a relationship between ΔP and $v_{\text {avg }}$

Summary:
If Laminar: F_{k} can be calculated exactly

$$
v_{x}(r) \rightarrow \tau_{r x} \rightarrow F_{x}=\int \tau d A
$$

If Turbulent: Use empirical f from experiment or simulation $f=f(\operatorname{Re}$, Geometry $)$

Flow Past Objects:

PLATE

VS.

$$
\begin{aligned}
& F_{k}=\underbrace{F_{\text {friction }}}_{\begin{array}{c}
\text { shear griping } \\
\text { sides }
\end{array}}+\underbrace{F_{\text {form }}}_{\begin{array}{c}
\text { dynamic pressure } \\
\text { of impinging flow }
\end{array}} \\
& F_{k}=(f A K)_{\text {friction }}+(f A K)_{\text {form }}
\end{aligned}
$$

Solve for: $(f A K)_{\text {friction }}$
Laminar: Solve exactly with Stokes Law

$$
\begin{aligned}
f_{\text {fric }} & =\frac{24}{R e} \\
A & =\frac{\pi}{4} d^{2} \\
K & =\frac{1}{2} \rho v^{2} \\
F_{\mathrm{k}, \text { fric }} & =3 \pi \mu v d
\end{aligned}
$$

Turbulent: negligible

Solve for: $(f A K)_{\text {form }}$
Laminar: $F_{\text {form }} \approx 0$

Turbulent:

$$
\begin{aligned}
f_{\text {form }} & \approx 0.44 \\
A & =\frac{\pi}{4} d^{2} \\
K & =\frac{1}{2} \rho v^{2} \\
F_{\text {form }} & =f_{\text {form }} \frac{\pi}{8} d^{2} \rho v^{2}
\end{aligned}
$$

Summary:

$$
F_{k}=\underbrace{F_{\text {fric }}}_{\substack{\text { laminar } \\
\text { term }}}+\underbrace{F_{\text {form }}}_{\begin{array}{c}
\text { turbulent } \\
\text { term }
\end{array}}
$$

where $f_{\text {fric }}$ is a function of the Reynolds Number and $f_{\text {form }}$ is a function of Geometry

MIT OpenCourseWare
http://ocw.mit.edu

3.044 Materials Processing

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

