3.044 MATERIALS PROCESSING

LECTURE 6

Ex. 1: glass fiber (ceramic)
Ex. 2: plasma spray (ceramic and metal)
Ex. 3: hot rolling steel slabs (metal)

look at iron-carbon (steel) phase diagram, red hot is about $900-1000^{\circ} \mathrm{C}$, need to heat into gamma field to make it soft and eliminate ceramic carbide phase

Problem Statement: How long in furnace to heat the block to $900^{\circ} \mathrm{C}$

Geometry: rectangular, long on z, long on y, $L_{x}=12.5 \mathrm{~cm}$ $\Rightarrow 1$-D slab, half-thickness $L_{x}=12.5 \mathrm{~cm}$

Boundary Conditions:

1. $T_{0}=25^{\circ} \mathrm{C}$
2. @ $\mathrm{x}=0$ symmetry: $\frac{\partial T}{\partial x}=0$
3. @ $\mathrm{x}=L_{x}$ convection: $\quad q_{\mathrm{conv}}=h\left(T-T_{f}\right), h=100 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}$ and $T_{f}=1000^{\circ} \mathrm{C}$

Governing Equation: $B_{i}=\frac{h L}{k}$

$$
\begin{aligned}
h & =100, L=0.125 \mathrm{~m}, k=35 \frac{\mathrm{~W}}{\mathrm{mK}} \\
B_{i} & =\frac{100 \cdot 0.125}{35}=0.36 \Rightarrow \text { must deal with both conduction and convection }
\end{aligned}
$$

$$
\frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}} \quad \text { With B.C } @ \mathrm{x}=L_{x}: \quad-k \frac{\partial T}{\partial x}=h\left(T-T_{f}\right)
$$

Graph for sheet @ $\mathbf{x}=\mathbf{0}: \frac{T-T_{f}}{T_{i}-T_{f}}=f\left(F_{0}\right)$
$T=900, T_{f}=1000, T_{i}=25 \approx 0 \Rightarrow \Theta=0.1$ target
From Graph: $\quad F_{0} \approx 8=\frac{\alpha t}{L^{2}}, L=0.125 \mathrm{~m}, \alpha=\frac{k}{\rho c_{p}}=\frac{35}{7700\left[\frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right] 0.8\left[\frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}\right]}$
Solution: $t=22,000 s \approx 6$ hours

How to decrease time?: $\frac{T-T_{f}}{T_{i}-T_{f}}=f\left(k, c_{p}, \rho, t, L_{x}, h\right)$

1. thinner $\mathrm{L} \rightarrow$ constrained by casting
2. higher h (fluid) \rightarrow molten metal, salt
3. hotter $T_{f} \rightarrow$ high energy, doesn't drastically change time
4. preheat $T_{i} \Rightarrow$ vertical integration, combine casting and rolling temperatures such
5. preheat $I_{i} \Rightarrow$ that steel is still hot from casting as it goes through hot rolling process

Solution: increase T_{i} to $500^{\circ} \mathrm{C}$
$\Theta=0.2, \quad F_{0} \approx 5-6$,
$t \approx 4 \mathrm{hrs}$

Ex. 3b: Multidimensional

Geometry: z long

Governing Equation: $\frac{\partial T}{\partial x}=\alpha \nabla^{2} T=\alpha\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right)$

Superposition Principle:

If there is only 1 dimensionless temperature for all dimensions (all dimensions share the same boundary conditions), then

$$
\Theta(x, y, t)=\Theta(x, t) \Theta(y, t)
$$

$$
\begin{aligned}
& \Theta(x, t)=\operatorname{erf} \frac{x}{2 \sqrt{\alpha t}} \\
& \Theta(y, t)=\operatorname{erf} \frac{y}{2 \sqrt{\alpha t}}
\end{aligned}
$$

Full Solution:

$$
\Theta(x, y, t)=\operatorname{erf} \frac{x}{2 \sqrt{\alpha t}} \operatorname{erf} \frac{y}{2 \sqrt{\alpha t}}
$$

In 3 dimensions:

$$
\Theta(x, y, z, t)=\operatorname{erf} \mathrm{X} \operatorname{erf} \mathrm{Y} \operatorname{erf} \mathrm{Z}
$$

Problem Statement: How long does it take to heat to $900^{\circ} \mathrm{C}$ in 2 dimensions?
Solution: t when $\Theta=0.1 @ \mathrm{x}=0$ and $\mathrm{y}=0$

$$
\begin{aligned}
\Theta(x, t) & =f\left(F_{0, x}\right) \\
\Theta(y, t) & =f\left(F_{0, y}\right) \\
\Theta(x, y, t) & =\Theta(x, t) \Theta(y, t)
\end{aligned}
$$

By Symmetry:

$$
\begin{aligned}
F_{0, x} & =F_{0, y} \\
\Theta(x, t) & =\Theta(y, t)=\sqrt{0.1}=0.32 \\
F_{0} & =4 \\
t & \approx 3 \mathrm{hrs}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

3.044 Materials Processing

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

