3.044 MATERIALS PROCESSING

LECTURE 2

Recap: Conduction Equation
3D: $\quad \rho c_{p} \frac{\partial T}{\partial t}=\nabla \cdot k \nabla T=k \nabla^{2} T$
1D: $\quad \rho c_{p} \frac{\partial T}{\partial t}=\frac{\partial}{\partial x} k \frac{\partial T}{\partial x}=k \frac{\partial T^{2}}{\partial t^{2}}$
in our derivation last time we stated...

$$
\begin{aligned}
\Delta x \frac{\partial H}{\partial T} & =q_{\text {in }}-q_{\text {out }} \\
& =\left.q\right|_{x}-\left.q\right|_{x+\Delta x} \\
& =\left.\left(-k \frac{\partial T}{\partial x}\right)\right|_{x}+\left.\left(k \frac{\partial T}{\partial x}\right)\right|_{x+\Delta x} \\
& =k\left(\left.\frac{\partial T}{\partial x}\right|_{x+\Delta x}-\left.\frac{\partial T}{\partial x}\right|_{x}\right) \\
& =k \frac{\Delta \frac{\partial T}{\partial x}}{\Delta x} \\
& =k \frac{\partial^{2} T}{\partial t^{2}} \quad \text { assumes } \mathrm{k} \text { independent of } \mathrm{x}, \mathrm{~T}
\end{aligned}
$$

Is it possible that the value of \mathbf{k} is different at x and $x+\Delta x$?

Date: February 13th, 2012.

Taking k out of the derivative assumes that $k \neq f(x)$ and $k \neq f(T)$, because $T=f(x)$.

Is this assumption valid?

For most materials for most small working T ranges ($<$ factor of 2) is usually negligible.

Simplify the conduction equation:

What we have done so far:

$$
\begin{aligned}
\rho c_{p} \frac{\partial T}{\partial t} & =\nabla \cdot k \nabla T \\
\frac{\partial T}{\partial t} & =\alpha \nabla^{2} T
\end{aligned}
$$

3 D to 1 D

$$
\frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}}
$$

Assumption 1: Steady State

Steady State Conduction: $\begin{aligned} & \text { unchanging temperature with time (T profile), } \\ & \text { heat is flowing, but at constant rates everywhe }\end{aligned}$ heat is flowing, but at constant rates everywhere

$$
\begin{aligned}
& \frac{\partial T}{\partial t}=\nabla^{2} T=0 \\
& \nabla^{2} T=0 \quad \text { Laplace Equation }
\end{aligned}
$$

1-D Sheet and Bar

Solve

$$
\begin{aligned}
\frac{\partial^{2} T}{\partial x^{2}} & =0 \\
\frac{\partial}{\partial x}\left(\frac{\partial T}{\partial x}\right) & =0 \\
\partial\left(\frac{\partial T}{\partial x}\right) & =0 \\
\frac{\partial T}{\partial x} & =A \\
d T & =A d x \\
T & =A x+B
\end{aligned}
$$

Apply Boundary Conditions

$$
\begin{aligned}
\text { 1. @ } x & =0, T=T_{1} \\
T & =A(0)+B=T_{1} \\
\therefore B & =T_{1} \\
2 . @ x & =L, T=T_{2} \\
T & =A(L)+T_{1}=T_{2} \\
\therefore A & =\frac{T_{2}-T_{1}}{L}
\end{aligned}
$$

Plug In

$$
T=\left(\frac{T_{2}-T_{2}}{L}\right) x+\left(T_{1}\right)
$$

Rearrange

$$
\frac{T-T_{1}}{T_{2}-T_{1}}=\frac{x}{L}
$$

Define Dimensionless Variables:

LECTURE 2
Dimensionless Position (0-1)

$$
\Theta=\underbrace{\overbrace{T-T_{1}}^{T_{2}-T_{1}}}_{\text {full temp. range }} \text { Fractional Position }
$$

Dimensionless Position (0-1)

$\therefore q$ is a constant
Heat flow out of a pipe

Steady State:

$$
\begin{aligned}
& \frac{\nabla^{2} T}{}=0 \\
& \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} T}{\partial \theta^{2}}+\frac{\partial^{2} T}{\partial Z^{2}}=0 \\
& 1 \\
& \partial r\left(r \frac{\partial T}{\partial r}\right)=0
\end{aligned}
$$

Solve

$$
\begin{aligned}
\frac{d}{d r}\left(r \frac{\partial T}{\partial r}\right) & =0 \\
\int d\left(r \frac{\partial T}{\partial r}\right) & =\int 0 \\
r \frac{d T}{d r} & =A \\
\int d T & =\int \frac{A}{r} d r \\
T & =A \ln r+B
\end{aligned}
$$

Boundary Conditions

$$
\begin{aligned}
\text { 1. } @ r=R_{1}, T & =T_{1} \\
T_{1} & =A \ln R_{1}+B \\
2 . @ r=R_{2}, T & =T_{2} \\
T_{2} & =A \ln R_{2}+B
\end{aligned}
$$

Solve for A

$$
\begin{aligned}
T_{1}-A \ln R_{1} & =T_{2}-A \ln R_{2} \\
T_{1}-T_{2} & =A \ln R_{1}-A \ln R_{2} \\
T_{1}-T_{2} & =A\left(\ln \frac{R_{1}}{R_{2}}\right) \\
A & =\frac{T_{1}-T_{2}}{\ln \frac{R_{1}}{R_{2}}}
\end{aligned}
$$

Solve for B

$$
\begin{aligned}
& T_{1}=A \ln R_{1}+B \\
& T_{1}=\frac{T_{1}-T_{2}}{\ln \frac{R_{1}}{R_{2}}} \ln R_{1}+B \\
& B=T_{1}-\frac{T_{1}-T_{2}}{\ln \frac{R_{1}}{R_{2}}} \ln R_{1}
\end{aligned}
$$

Plug In

$$
\begin{aligned}
& T=A \ln r+B \\
& T=\frac{T_{1}-T_{2}}{\ln \frac{R_{1}}{R_{2}}} \ln r+T_{1}-\frac{T_{1}-T_{2}}{\ln \frac{R_{1}}{R_{2}}} \ln R_{1} \\
& \Theta=\frac{T-T_{1}}{T_{2}-T_{1}}=\frac{\ln \left(\frac{r}{R_{1}}\right)}{\ln \left(\frac{R_{2}}{R_{1}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
q & =-k \frac{\partial T}{\partial r} \quad \text { Flux is not constant everywhere } \\
q \cdot \underbrace{A}_{2 \pi r} & =\text { constant } \quad \text { Total heat flow is constant everywhere }
\end{aligned}
$$

Composite Wall

Steady State 1D

$$
\frac{\partial^{2} T}{\partial x^{2}}=0 \quad \text { in material } \mathrm{A} \text { and } \mathrm{B}
$$

Boundary Conditions

$$
\begin{aligned}
& @ x=L_{A}, T=T_{2} \\
& @ x=L_{A}, q_{\mathrm{in}}=q_{\mathrm{out}}
\end{aligned}
$$

Solve

$$
\begin{aligned}
\left.k_{A} \frac{\partial T}{\partial x}\right|_{L_{A}-} & =\left.k_{B} \frac{\partial T}{\partial x}\right|_{L_{A}+} \\
k_{A} \frac{\Delta T_{A}}{L_{A}} & =k_{B} \frac{\Delta T_{B}}{L_{B}} \quad \text { because slope is const. } \\
\frac{k_{A}}{L_{A}}\left(T_{1}-T_{2}\right) & =\frac{k_{B}}{L_{B}}\left(T_{2}-T_{3}\right) \\
& \Rightarrow \text { Solve for } T_{2}, \text { the unknown } T
\end{aligned}
$$

How is this useful to engineers?

$$
\begin{aligned}
\frac{\Delta T_{A}}{\Delta T_{B}} & =\frac{\frac{L_{A}}{k_{A}}}{\frac{L_{B}}{k_{B}}} \\
\Delta T & \propto \frac{L}{K} \\
\frac{L}{K} & =\text { Thermal Resistivity }
\end{aligned}
$$

Say we are making a furnace out of steel

$$
\begin{array}{rlr}
\left.\frac{L}{k}\right|_{\text {steel }} & =\frac{.01 \mathrm{~m}}{30 \frac{\mathrm{~W}}{\mathrm{mK}}}=0.0003 & \Delta T 10 \mathrm{x} \text { less } \\
\left.\frac{L}{k}\right|_{\text {mullite }} & =\frac{.01 \mathrm{~m}}{3 \frac{\mathrm{~W}}{\mathrm{mK}}}=0.003 & \Delta T 10 \mathrm{x} \text { more }
\end{array}
$$

Read As:

1. Mullite has 10 x the temperature drop of steel
2. Mullite conducts slowly compared to steel
3. Steel is a faster conductor

MIT OpenCourseWare
http://ocw.mit.edu

3.044 Materials Processing

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

