Lecture 2: Biomaterials Surfaces: Physics

The surface of a material strongly dictates its performance in vivo.

Surface Properties Influencing Cell Adhesion		
Wettability	Crystallinity	
Roughness	Composition	
Electrical Charge	Mobility	

What's so special about a surface?

Surface vs. Bulk

Requires special characterization tools

2. Enhanced Mobility

- fewer bonds
- gradient in density

Facilitates rate-limited processes (phase transformations, crystallization, corrosion...)

Example: Devitrification of calcium phosphate glass CaO-P₂O₅-SiO₂ (44:40:15)

Crystallization initiates at surface

E _{a,cry}	powder size
(kcal/mol)	(µm)
75	< 44
108	297-590

from J.-S. Lee et al., *J. Thermal Anal. Cal.* **56** (1999) 137.

3. Higher Energy State

Atoms/molecules with unsatisfied ("dangling") or strained bonds

High reactivity and susceptibility to adsorbates

Quantifying Surface Energy

loss of bonds at a surface \implies attraction towards bulk = areal contraction force

Surface tension, γ , is the work required to create unit surface area at constant *T*,*P* and composition.

Consider a simple soap film experiment:

where G = Gibbs free energy, A = area

Surface Tensions of Example Materials

Material	T (°C)	γ (dvn/cm)	2
Teflon (PTFE)	$\overline{20}$	19	$1 \text{ dyn/cm} = 1 \text{ mJ/m}^2$
Silicone (PDMS)	20	20	= 1 erg/cm
PE	20	36	
PMMA	20	41	
PEO	20	43	
Water	20	73	
soda-lime-silicate (<i>l</i>)	1350	350	$\gamma \downarrow w / \uparrow T$
FeO	1400	580	
Al_2O_3	1850	950	$\gamma_{sv} \propto \Delta H_{sublim}$
TiC	1100	1190	$\gamma_{ m lv} \propto \Delta H_{ m vapor}$
Ti (<i>l</i>)	1660	1550	
δ-Fe (bcc)	1400	1900	

Trends: high γ materials: (>200 dyn/cm) – metals, carbides, oxides low γ materials: polymers, organics

Why? Consider the nature of bonds...

Surface tension is a measure of *degree of cohesion*.

Work of cohesion: $W_C = 2\gamma$

Surface Phenomena

A simple rule: Surface phenomena are driven primarily by an associated reduction in surface free energy.

Important examples in biomaterials:

- adsorption of a species from environment
- surface segregation of a species from bulk
- surface reconstructions
- surface reactions

1. Adsorption phenomena

Tenet 1: Higher energy surfaces are quickly coated/contaminated by lower energy species.

Classes of adsorption:

chemisorption – strong modifications to electronic structure/electron density of adsorbate molecule (> 0.5 eV/surface site)

physisorption – adsorbate weakly adherent via secondary (i.e., van der Waals') interactions (< 0.25 eV/surface site)</p>

Example: PMMA on silica

$$E_{ads} = 0.1 \text{ eV/mer}$$

N' mers adsorbed × 0.1 eV/mer ≈ total adsorption energy

N' < *N* (segments/chain)

Tenet 2: The "high energy surface" of tenet 1 is relative to its surrounding medium.

In H₂O based environments, a hydrophilic material has a *lower interfacial energy* than a hydrophobic one.

Example: Adsorption/denaturing of proteins on hydrophobic surfaces in water-based environments

Such adsorption phenomena are examples of "thermodynamic adhesion"

Adhesion – state in which 2 dissimilar bodies are held together in intimate contact such that a <u>force can be transferred</u> across the interface.

Thermodynamic adhesion is driven by interfacial forces associated with <u>reversible</u> processes.

Work of Adhesion (W_{12}) : the work required to separate a unit area of interface between 2 phases.

$$\begin{split} W_{12} &= \gamma_1 + \gamma_2 - \gamma_{12} \quad W_{12} > 0 \implies adhesion \\ \gamma_{12} &= \alpha/\beta \text{ interfacial tension} \end{split}$$
 (for $\alpha = \beta$, $W_{12} = W_C = 2\gamma_1$)

We can approximate W_{12} with a geometric mean:

 $W_{12} \approx (W_{C,1} W_{C,2})^{1/2} = 2(\gamma_1 \gamma_2)^{1/2}$

By analogy, for α/β adhesion in aqueous:

Suggests 2 strategies for protein resistance: $W_{12}=0$

$$W_{12,W} = \gamma_{1W} + \gamma_{2W} - \gamma_{12,W} \times 2(\gamma_{1W} \gamma_{2W})^{1/2} \checkmark$$

Or for $\gamma_1 = \gamma_1^{\ d} + \gamma_1^{\ p}$ $W_{12} = 2(\gamma_1^{\ d} \gamma_2^{\ d})^{1/2} + 2(\gamma_1^{\ p} \gamma_2^{\ p})^{1/2}$

Strategies for Inhibiting Protein Adhesion:

a) Ultra-hydrophobic systems $\gamma_1 = 0 \implies \gamma_{1W} \approx \gamma_W$

Example: PTFE (γ = 19 dyn/cm)

 $\Rightarrow Proteins adsorb but don't adhere well. (the "non-stick pan" principle)$

b) Ultra-hydrophilic systems $\gamma_{1W} = 0 \implies \gamma_1 \approx \gamma_W$

Example: PEO ($\gamma_{1W} \approx 0$)

⇒ Surface favors water contacts—proteins don't adsorb.

BSA adsorption on various polymers at 37°C.

(after Y. Ikada et al., Polymers as Biomaterials, Plenum Press, NY 1984)

Figure by MIT OCW.

For
$$W_{1W} = 2(\gamma_1 \gamma_W)^{1/2}$$

 $\Rightarrow \gamma_{1W} = (\gamma_1^{1/2} - \gamma_W^{1/2})^2$

8

The *hydrophilicity* of a surface can be gauged by measuring the *contact angle* of a droplet of water on the surface. The balance of interfacial forces is described by *Young's Equation*:

γsv

Since $W_{SL}=~\gamma_{LV}+\gamma_{SV}$ - γ_{SL}

$$\implies$$
 W_{SL} = γ_{LV} (1+cos θ)

γ_{LV}

γ_{SL}

θ	Wettability
0	Complete
<90	Partial
>90	Non wetting

 $\gamma_{LV} \cos \theta = \gamma_{SV} - \gamma_{SL}$

For multi-component surfaces:

Cassie's eqn: $\cos \theta = f_1 \cos \theta_1 + f_2 \cos \theta_2$ where f_i = area fraction of i

2. Surface Segregation

An interfacial adsorption phenomenon involving a bulk component of a multi-component material.

Example 1: Surface segregation of a dilute solute (B) in a binary AB alloy

Surface fraction of B $(X_{B,S})$ can be described using the Langmuir-McLean relation:

$$\frac{X_{B,S}}{1 - X_{B,S}} = \frac{X_B}{1 - X_B} \exp\left[\frac{-\Delta G_S}{RT}\right]$$

where ΔG_S = free energy of segregation per mole of solute.

Surface enrichment is given by:

 $\frac{X_{B,S}}{X_B} \approx \exp\left[\frac{-\Delta G_S}{RT}\right]$

 $\ln X = 2.3 \log_{10} X$ *R* = 8.314 J/mol-K

The predicted behavior is more transparent by expanding the exponential...

 $\frac{X_{B,S}}{X_B} \approx 1 - \frac{\Delta G_S}{RT} + \dots$

The Langmuir-McLean relation indicates:

- Surface enrichment occurs when ΔG_S is negative
- Surface coverage increases with bulk solute content
- Surface enrichment decreases with increasing T

 $\Delta G_{\rm S}$ can be estimated from the Miedema eqn:

$$\Delta G_{S} = -0.24 \Big[\Delta H_{mix} + (\gamma_{A,SV} - \gamma_{B,SV}) 6N_{Av}^{1/3} V_{m,B}^{2/3} \Big]$$

prefactor is fraction of atom contacting vacuum

$$\gamma_{B,SV} = \frac{\Delta H_{sub}}{6N_{Av}^{1/3}V_{m,B}^{2/3}}$$

 $\Delta G_{\rm S} > 0$ no surface

 $\Delta G_{\rm S} < 0$ surface

enrichment of B

enrichment of B

molar volume

The Miedema model is ~90% accurate in predicting segregation in AB alloys.

Metal surface tensions can be estimated from:

Source: *Interfaces in Materials*, J.M. Howe, John Wiley &Sons: NY (1997) pp. 156-168.

Surface segregation also occurs commonly in organic materials...

In polymers, **ENTROPY** can play a significant role in surface segregation.

Polymer "random coil" conformations are restricted by the presence of a surface

 \Rightarrow Less chain configurations!

Surface segregation importance to biomaterials applications:

- Toxicity
- Corrosion resistance
- Modified protein/cell adhesivity

But...also *a strategy* for surface modification!

Chain ends surface segregate to decrease entropic penalty

Short chains surface segregate when mixed with long chains

Surface modification with a comb polymer additive

3. Surface Reconstruction

Atomic or molecular rearrangement at surface to reduce surface/ interfacial tension.

Example 1: Faceting in MgO

Rocksalt structure

 $\bigcirc = O^{2-}$ (fcc lattice pts) $\bullet = Mg^{2+}$ (octahedral interstices)

(100) is preferred plane of cleavage (charge neutral!)

Miscut surfaces will facet

Oxides surfaces reconstruct to achieve:

1) no net dipole moment

2) minimial loss of nearest neighbor ligand coordination

Structure	low γ plane	Examples
M ₂ O ₃	10 <u>1</u> 2	Ti ₂ O ₃ , V ₂ O ₃ , Fe ₂ O ₃ ,
corundum		Al_2O_3 , Cr_2O_3
MO ₂	110	TiO ₂ , SnO ₂
rutile		
MO	100	MgO, CaO, CoO
rocksalt		

Low Energy Oxide Surfaces			
LOW ENERGY OXIGE SURICES	Low Enorman	Orida	Sumfagaa
	LOW Energy	Oxiae	Surfaces

Example 2. Reorientation of polymer chains in water vs. air

Chain reorientation can be observed with dynamic contact angle studies:

Advancing: Droplet volume increased (by syringe)

