Lecture 1: Intro. to Biomaterials: Structural Hierarchy in Materials & Biology

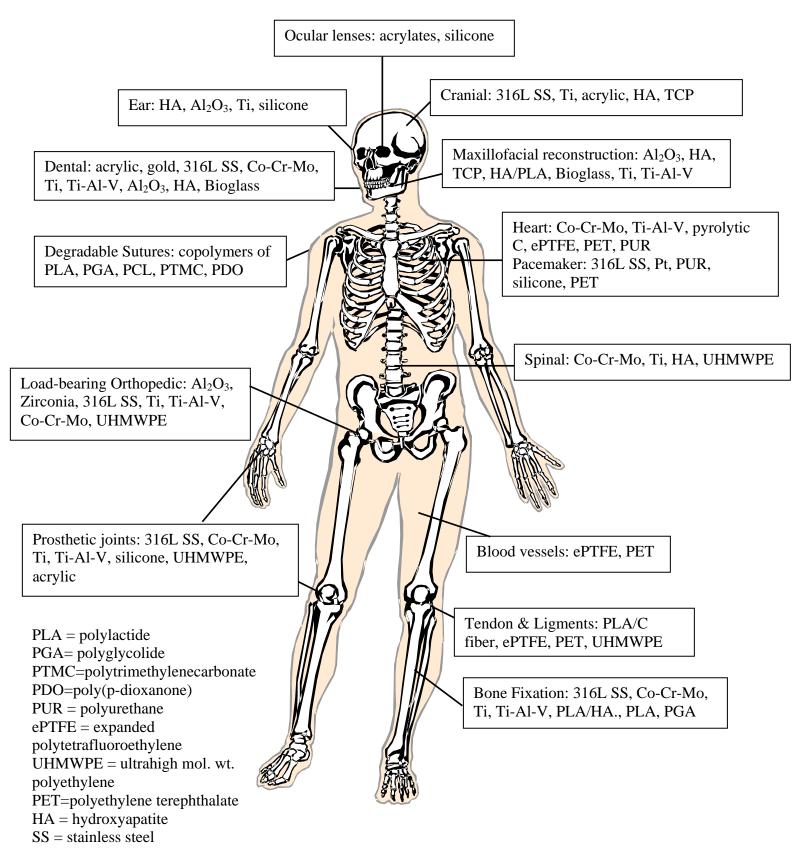
What are "biomaterials"?

A good working definition from the text is: "A nonviable material used in a medical device, intended to interact with biological systems."*

MEDICAL DEVICE EXAMPLES	ANNUAL # (U.S.)*
Sutures (temporary or bioresorbable)	250 M**
Catheters (fluid transport tubes)	200 M
Blood Bags	40 M
Contact Lenses	30 M
Intraocular Lenses	2.5 M
Coronary Stents	1.2 M***
Knee and Hip Prostheses	0.5 M
Breast Prostheses (cancer or cosmetic)	0.25 M
Dental Implants	0.9 M
Renal Dialyzers (patients)	0.3 M
Oxygenators/CPB's (cardiopulmonary bypass system—	0.3 M
facilitates open heart surgery)	
Vascular Grafts	0.3 M
Pacemakers (pulse generators)	0.4 M

Biomaterials are defined by their application, NOT chemical make-up

Ex. Intraocular lenses


Composition: poly(methyl methacrylate) PMMA, a.k.a. "acrylic"

Properties:

- High refractive index
- Easily processed
- Environmentally stable (relatively inert)
- Good mechanical properties

Used as auto taillight covers for the same reasons!

Biomaterials cover all classes of materials – metals, ceramics, polymers

What governs materials choice?

<u>Historically \Rightarrow Today</u>

1. Bulk properties: matched to those of natural organs

- Mechanical (ex., modulus)
- Chemical (ex., degradation)
- Optical (ex., whiteness, clarity)

Medical Device Amendment of '76

approval for safety and efficacy)

(all new biomaterials must undergo premarket

2. Ability to Process

3. Federal Regulations:

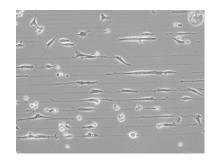
 $\underline{\text{Today}} \Rightarrow \overline{\text{Future}}$

Rational design of biomaterials based on better understanding of natural materials and the material/biological organism interface

9

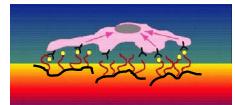
Adoption of the Materials Engineering Paradigm

Application (Performance) Properties Structure Processing


What is "structure"? the arrangement of matter

Both synthetic materials & biological systems have <u>many length</u> <u>scales</u> of structural importance.

Structural Hierarchies


Synthetic Materials		Living Organisms
Chemical Primary Structu	re 10^{-10} m	Molecules (H ₂ O, peptides, salts)
Higher Order Structure	The realm of biomaterials engineering	Organelles (lysosomes, nucleus, mitochondria)
Microstructure		Cells
Composites	10 ⁻³ m	Tissues
Parts		Organs
Devices		Individuals

Biomaterials Engineering spans ~8 orders of magnitude in structure!

Fibroblast cells aligned on micropatterned surface Engineered length scale: 10⁻³ to 10⁻⁶ m

Cell adheres to RGD peptide clusters linked to comb copolymer chain ends Engineered length scale: 10⁻⁷ to 10⁻⁸ m

Cell adhesion receptors embedded in membrane interact with RGD sequence Engineered length scale: 10^{-9} to 10^{-10} m

cytosol

LENGTH SCALES OF STRUCTURE

1. Primary Chemical Structure

(Atomic & Molecular: 0.1–1 nm)

Length scale of *bonding* – strongly dictates biomaterial performance

Primary

- Ionic: e⁻ donor, e⁻ acceptor *ceramics, glasses (inorganic)*
- Covalent: e sharing glasses, polymers
- Metallic: e⁻ "gas" around lattice of + nuclei

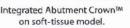
Secondary/Intermolecular

- Electrostatic
- H-bonding
- Van der Waals (dipole-dipole, dipole-induced dipole, London dispersion)
- Hydrophobic Interactions (entropy-driven clustering of nonpolar gps in H₂O)
- Physical Entanglement (high MW polymers)

Ex. 1: alumina Al₂O₃ (corundum)

used for hard tissue replacement – e.g., dental implants

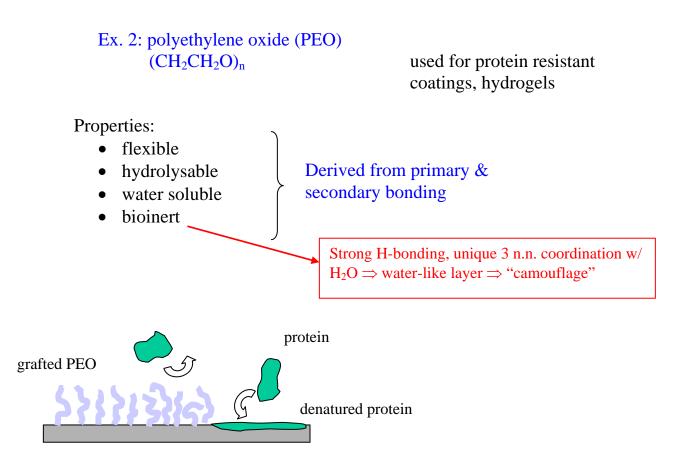
Properties:


- corrosion resistant
- high strength
- wear resistant
- "biocompatible"

derived from ionic bonding

Electrostatic interactions w/ charges on proteins \Rightarrow non-denatured adsorbed protein layer \Rightarrow "camouflage"

from Biocon, Inc. website: www.biocon.com

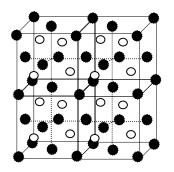


Insertion of Integrated Abutment Crown[™] into implant well.

Integrated Abutment Crown™.

Courtesy of BICON, LLC. (http://www.bicon.com). Used with permission.

Take Home Message:


"Biocompatibility" is strongly determined by primary chemical structure!

Biocompatibility: "ability of a material to perform with an <u>appropriate</u> host response"

Chemical Structure Ű Protein Adsorption ļļ Cell Attachment ļļ **Cell Secretion** ļļ Host Response

2. Higher Order Structure (1 – 100 nm)

Crystals: 3D periodic arrays of atoms or molecules

metals, ceramics, polymers (semicrystalline)

crystallinity decreases solubility and bioerosion (biogradable polymers & bioresorbable ceramics)

Networks: exhibit short range order & characteristic lengths

inorganic glasses, gels

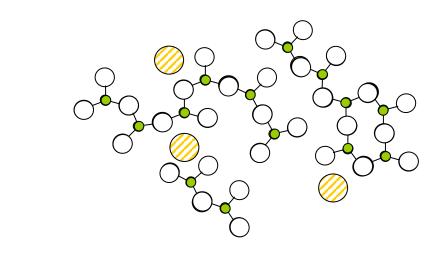
Ex. 1: Bioactive Glasses

used for hard connective tissue replacement

Network formers (~50wt%): SiO₂, P₂O₅ Network modifiers (high! ~50wt%): Na₂O, CaO

Properties:

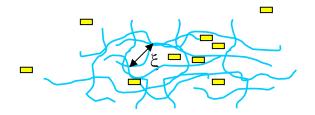
 Na^+


 O^{2-}

 Si^{4+}

 \bigcirc

- partially soluble in vivo (facilitates bone bonding)
- easily processed (complex shapes)


derived from loose ionic network

Ex. 2: Hydrogels

used for contact lenses, drug delivery matrices, synthetic tissues

x-linked, swollen polymer network

crosslink density ~ $1/\xi^3$

Properties:

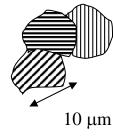

- shape-retaining
- flexible
- slow release of entrapped molecules

derived from crosslinked network

Self-Assemblies: aggregates of amphiphilic molecules micelles, lyotropic liquid crystals, block copolymers

Ex.: Cationic Liposomes

used for gene therapy

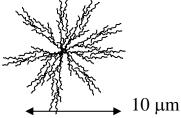

Properties:

- water dispersible
- can contain/release DNA
- can penetrate cell membrane (-)

derived from supramolecular assembly

3. Microstructure $(1\mu m +)$

Crystal "grains": crystallites of varying orientation

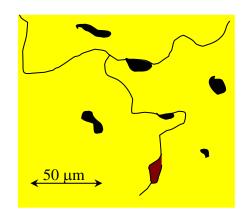


Ex: Stainless steels Fe-Ni-Cr

Depletes at grain boundaries causing corrosion

used for fracture fixation plates, etc., & angioplasty stents

Spherulites: radially oriented crystallites interspersed w/ amorphous phase semicrystalline polymers, glass-ceramics


Precipitates: secondary phases present as inclusions

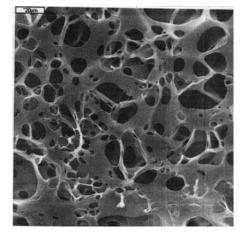
metals, ceramics, polymers

Ex: Carbides in Co-Cr alloys

Properties:

- Hardness
- derived from precipitates • Corrosion resistance (form at grain boundaries)

Porosity: often desirable in biomaterials applications


Ex. 1: Porous Bioresorbable Scaffolds polylactide (PLA)

used for tissue regeneration

Properties:

- Penetrable to body fluids, cells
- Structurally stable

derived from pore microstructure

Pore dimensions: 10-100 µm

Ex. 2: Porous Metal Coatings

Ti or Co-Cr-Mo

Properties:

- Enhanced cell adhesion
- Tissue ingrowth

derived from pore microstructure

used on hard tissue replacemt implants

Pore dimensions: 10-100 µm

Take Home Message:

Higher order structure & microstructure strongly dictate kinetic processes & mechanical response.