Lecture 11 Surface Characterization of Biomaterials in Vacuum

The structure and chemistry of a biomaterial surface greatly dictates the degree of biocompatibility of an implant. Surface characterization is thus a central aspect of biomaterials research.

Surface chemistry can be investigated directly using high vacuum methods:

- Electron spectroscopy for Chemical Analysis (ESCA)/X-ray Photoelectron Spectroscopy (XPS)
- Auger Electron Spectroscopy (AES)
- Secondary Ion Mass Spectroscopy (SIMS)

1. XPS/ESCA

Theoretical Basis:

- Secondary electrons ejected by x-ray bombardment from the sample near surface (0.5-10 nm) with characteristic energies
- Analysis of the photoelectron energies yields a quantitative measure of the surface composition

Binding energy = incident x-ray energy – photoelectron kinetic energy

$$E_{\rm B} = h\nu - E_{\rm kin}$$

Quantitative Elemental Analysis

- > Area under peak $I_i \propto$ number of electrons ejected (& atoms present)
- Only electrons in the near surface region escape without losing energy by inelastic collision
- Sensitivity: depends on element. Elements present in concentrations
 >0.1 atom% are generally detectable (H & He undetected)
- > Quantification of atomic fraction C_i (of elements detected)

 S_i is the sensitivity factor:

f(instrument & atomic parameters)can be calculated

→ Ratio of peak areas gives a ratio of photoelectrons ejected from atoms in a particular bonding configuration (S_i = constant)

Electronegative oxygen "robs" valence electrons from carbon (electron density higher toward O atoms) \bigcirc Carbon core electrons held "tighter" to the + nucleus (less screening of + charge) \bigcirc Slight shift to higher C_{1s} binding energy

Similarly, different oxidation states of metals can be distinguished.

Ex. Fe FeO Fe₃O₄ Fe₂O₃ Fe_{2p} binding energy

XPS signal comes from first ~10 nm of sample surface.

What if the sample has a concentration gradient within this depth?

Adsorbed species

Depth-Resolved ESCA/XPS

The probability of a photoelectron escaping the sample without undergoing inelastic collision is inversely related to its depth *t* within the sample:

$$P(t) \sim \exp\left(\frac{-t}{\lambda_e}\right)$$

where λ_e (typically ~ 5-30 Å) is the electron inelastic mean-free path, which depends on the electron kinetic energy and the material. (Physically, $\lambda_e = avg$. distance traveled between inelastic collisions.)

> Variation of composition with angle may indicate:

- Preferential orientation at surface
- Surface segregation
- Adsorbed species (e.g., hydrocarbons)
- etc.

Quantifying composition as a function of depth

The area under the *j*th peak of element *i* is the integral of attenuated contributions from all sample depths *z*:

$$I_{ij} = C_{inst} T(E_{kin}) L_{ij} \sigma_{ij} \int n_i(z) \exp\left(\frac{-z}{\lambda_e \sin\theta}\right) dz$$

 C_{inst} = instrument constant $T(E_{kin})$ = analyzer transmission function L_{ij} = angular asymmetry factor for orbital *j* of element *i* σ_{ij} is the photoionization cross-section $n_i(z)$ is the atomic concen. of *i* at a depth *z* (atoms/vol) For a semi-infinite sample of homogeneous composition:

$$I_{ij} = -I_{ij,o} n_i \lambda_e \sin \theta \exp\left(\frac{-z}{\lambda_e \sin \theta}\right) \Big|_0^\infty = I_{ij,o} n_i \lambda_e \sin \theta = S_i n_i = I_{ij,\infty}$$

where $I_{ij,o} = C_{inst}T(E_{kin})L_{ij}\sigma_{ij}$

Relative concentrations of elements (or atoms with a particular bond configuration) are obtained from ratios of I_{ij} (peak area):

- L_{ij} depends on electronic shell (ex. 1s or 2p); obtained from tables; cancels if taking a peak ratio from same orbitals, ex. $I_{C_{1s}} / I_{O_{1s}}$
- C_{inst} and $T(E_{kin})$ are known for most instruments; cancel if taking a peak ratio with $E_{kin} \approx \text{constant}$, ex. $I_{C_{1s}(C-C-O)} / I_{C_{1s}(C-CH_3)}$
- σ_{ij} obtained from tables; cancels if taking a peak ratio from same atom in different bonding config., ex. $I_{C_{1s}(C-C-O)} / I_{C_{1s}(C-CH_3)}$
- λ_e values can be measured or estimated from empirically-derived expressions

For polymers: $\lambda_e(nm) = \rho^{-1} \left(49E_{kin}^{-2} + 0.11E_{kin}^{0.5} \right)$

For elements:
$$\lambda_e(nm) = a \left[538E_{kin}^{-2} + 0.41(E_{kin}a)^{0.5} \right]$$

For inorganic compounds (ex. oxides):

$$\lambda_{e}(nm) = a \left[2170E_{kin}^{-2} + 0.72 \left(E_{kin}a \right)^{0.5} \right]$$

where:

a =monolayer thickness (nm)

MW = molar mass (g/mol) $\rho = \text{density} (\text{g/cm}^3)$

 $E_{kin} =$ electron kinetic energy (eV)

Ex: λ_e for C_{1s} using a Mg K_{α} x-ray source:

 $E_B = h\nu - E_{kin}$

For Mg K_{α} x-rays: $h\nu = 1254 \text{ eV}$ \blacktriangleright $E_{kin} = 970 \text{ eV}$ For C_{1s} : $E_B = 284 \text{ eV}$

 $\lambda_e(nm) = \rho^{-1} \left(49E_{kin}^{-2} + 0.11E_{kin}^{0.5} \right)$ Assume $\rho = 1.1 \text{ g/cm}^3$

 $\lambda_e = 3.1 \text{ nm}$

$$a = 10^7 \left(\frac{MW}{\rho N_{Av}}\right)^{1/3}$$

For non-uniform samples, signal intensity must be deconvoluted to obtain a quantitative analysis of concentration vs. depth.

Case Example: a sample comprising two layers (layer 2 semi-infinite):

$$1$$

$$2$$

$$I_{ij} = C_{ins} T(_{kin}) L_{ij} \sigma_{ij} \int n_i(z) \exp\left(\frac{-z}{\lambda_e \sin\theta}\right) dz$$

$$I_{ij} = -I_{ij,o}^{(1)} n_{i,1} \lambda_e \sin\theta \exp\left(\frac{-z}{\lambda_e \sin\theta}\right) \Big|_0^d - I_{ij,o}^{(2)} n_{i,2} \lambda_e \sin\theta \exp\left(\frac{-z}{\lambda_e \sin\theta}\right) \Big|_d^\infty$$

$$I_{ij} = I_{ij,o}^{(1)} n_{i,1} \lambda_{e,1} \sin\theta \left(1 - \exp\left(\frac{-d}{\lambda_{e,1} \sin\theta}\right)\right) + I_{ij,o}^{(2)} n_{i,2} \lambda_{e,2} \sin\theta \exp\left(\frac{-d}{\lambda_{e,1} \sin\theta}\right)$$

or
$$I_{ij} = I_{ij,\infty}^{(1)} \left(1 - \exp\left(\frac{-d}{\lambda_{e,1}\sin\theta}\right) \right) + I_{ij,\infty}^{(2)} \exp\left(\frac{-d}{\lambda_{e,1}\sin\theta}\right)$$

Why $\lambda_{e,1}$? Electrons originating in semi-infinite layer 2 are attenuated by overlayer 1

where $I_{ij,\infty}^{(i)}$ = measured peak area from a uniform, semi-infinite sample of material *i*.

Methods to solve for *d*

Scenario 1: $n_{i,2}=0$ (ex., C_{1s} peak of a polymer adsorbed on an oxide):

$$I_{ij} = I_{ij,\infty}^{(1)} \left(1 - \exp\left(\frac{-d}{\lambda_{e,1}\sin\theta}\right) \right) \qquad 1$$

> measure a bulk sample of the upper layer material $\Rightarrow I_{ij,\infty}^{(1)}$

$$\ln\left(1 - \frac{I_{ij}}{I_{ij,\infty}^{(1)}}\right) = \frac{-d}{\lambda_{e,1}\sin\theta}$$

> obtain slope of
$$\ln\left(1 - \frac{I_{ij}}{I_{ij,\infty}^{(1)}}\right)$$
 vs. $\csc\theta \Rightarrow -d/\lambda_{e,1}$

> for a fixed θ :

$$d = -\lambda_{e,1} \sin \theta \ln \left[1 - \frac{I_{ij}}{I_{ij,\infty}^{(1)}} \right]$$

 \succ substitute a calculated or measured $\lambda_{e,1}$ to obtain d

Scenario 2: $n_{i,1}=0$ (ex., M_{2p} peak from underlying metal oxide (MO_x):

$$I_{ij} = I_{ij,\infty}^{(2)} \exp\left(\frac{-d}{\lambda_{e,1}\sin\theta}\right) \qquad \begin{array}{c} 1\\ 2\end{array}$$

> measure I_{ij} for same peak at different take-off angles (θ_1 , θ_2)

$$\frac{I_{ij,\theta_1}}{I_{ij,\theta_2}} = \frac{I_{ij,o}^{(2)} n_{i,2} \lambda_{e,2} \sin \theta_1 \exp\left(\frac{-d}{\lambda_{e,1} \sin \theta_1}\right)}{I_{ij,o}^{(2)} n_{i,2} \lambda_{e,2} \sin \theta_2 \exp\left(\frac{-d}{\lambda_{e,1} \sin \theta_2}\right)}$$

$$\frac{I_{ij,\theta_1}}{I_{ij,\theta_2}} = \frac{\sin\theta_1}{\sin\theta_2} \exp\left(\frac{-d}{\lambda_{e,1}}\left(\csc\theta_1 - \csc\theta_2\right)\right)$$

$$d = \lambda_{e,1} \left(\csc \theta_2 - \csc \theta_1 \right)^{-1} \ln \left(\frac{I_{ij,\theta_1}}{I_{ij,\theta_2}} \frac{\sin \theta_2}{\sin \theta_1} \right)$$

> substitute a calculated or measured $\lambda_{e,1}$ to obtain *d*

Scenario 3: element present in <u>distinguishable bonding configurations</u> in layers 1 & 2 (ex., O_{1s} peak from -C-O-C- and MO_x):

$$I_{ij} = I_{ij,\infty}^{(1)} \left(1 - \exp\left(\frac{-d}{\lambda_{e,1}\sin\theta}\right) \right) + I_{ij,\infty}^{(2)} \exp\left(\frac{-d}{\lambda_{e,1}\sin\theta}\right)$$

$$\frac{I_{ij}^{(2)}}{I_{ij}^{(1)}} = \frac{I_{ij,o}^{(2)} n_{i,2} \lambda_{e,2} \sin \theta \exp\left(\frac{-d}{\lambda_{e,1} \sin \theta}\right)}{I_{ij,o}^{(1)} n_{i,1} \lambda_{e,1} \sin \theta \left(1 - \exp\left(\frac{-d}{\lambda_{e,1} \sin \theta}\right)\right)} \qquad 1$$

$$\blacktriangleright$$
 measure element peak areas $I_{ij}^{(1)}$ and $I_{ij}^{(2)}$

➢ for same element and orbital: $I_{ij,o}^{(1)} = I_{ij,o}^{(2)}$

➢ for same element and orbital:
$$\frac{n_{i,2}}{n_{i,1}} = \frac{C_{i,2}}{C_{i,1}}$$

$$\frac{I_{ij}^{(2)}}{I_{ij}^{(1)}} = \frac{C_{i,2}\lambda_{e,2}\exp\left(\frac{-d}{\lambda_{e,1}\sin\theta}\right)}{C_{i,1}\lambda_{e,1}\left(1 - \exp\left(\frac{-d}{\lambda_{e,1}\sin\theta}\right)\right)}$$

▷ solve numerically for *d*, substituting calculated values of $\lambda_{e,2}$ & $\lambda_{e,1}$

 \succ if $d \ll \lambda_{e,1} \sin \theta$:

$$\exp(-ax) \approx 1 - ax + \frac{\left(ax\right)^2}{2} - \dots$$

$$\frac{I_{ij}^{(2)}}{I_{ij}^{(1)}} = \frac{C_{i,2}\lambda_{e,2}\left(1 - \frac{d}{\lambda_{e,1}\sin\theta}\right)}{C_{i,1}\lambda_{e,1}\left(\frac{d}{\lambda_{e,1}\sin\theta}\right)}$$

$$d = \lambda_{e,1} \sin \theta \left[\frac{I_{ij}^{(2)} C_{i,1} \lambda_{e,1}}{I_{ij}^{(1)} C_{i,2} \lambda_{e,2}} + 1 \right]^{-1}$$

Ion Etching

Depth profiling for depths > 10 nm (100 nm $- 1 \mu m$)

Calibration of sputter rates: time \Rightarrow depth

2. Auger Electron Spectroscopy

Theoretical Basis:

- Auger electrons created by electron bombardment of sample are ejected from near surface (1-3 nm) with characteristic energies
- Analysis of the Auger electron energies yields a quantitative measure of the surface composition

INFORMATION: E_{xyz} is characteristic to element & bonding

AES vs. XPS

Advantages

- focused e-beam gives high x,y spatial resolution
 (5 nm vs. ~1 μm)
- larger bonding effects

Disadvantages

- charging effects on nonconductive samples (unsuitable)
- degradation of organics

3. Secondary Ion Mass Spectroscopy (SIMS)

Experimental Approach:

- Energetic ions (1-15 keV) bombard sample surface
- Secondary ions/charged fragments are ejected from surface and detected

Ion Guns

- types {

 Nobel gas: Ar⁺, Xe⁺
 liquid metal ion: Ga⁺, Cs⁺ (~1nm beam size ⇒ x,y mapping)
 pulsed LMI (time-of-flight source)
 low currents used: 10⁻⁸-10⁻¹¹A/cm²

Ion beam current	surface monolayer
(A/cm^2)	lifetime (s)
10 ⁻⁵	16
10-7	1600
10 ⁻⁹	1.6×10^5
10-11	1.6×10^7

1 Amp = 6.2×10^{18} ions/sec

Detectors

- sensitive to the ratio of mass/charge (m/z)
- resolution defined as $m/\Delta m$ (larger = better!)
- Quadrupole (RF-DC): resol. $m/\Delta m \sim 2000$; detects $m < 10^3$ amu

Oscillating RF field destabilizes ions: only ions with specified *m/z* can pass

• Magnetic sector: $m > 10^4$ amu; $m/\Delta m \sim 10,000$

• Time-of-flight (TOF): $m \sim 10^3 - 10^4$ amu; $m/\Delta m \sim 10,000$

Modes of Operation

Static SIMS

➢ low energy ions: 1-2 keV; penetration ~5-10 Å

Information:

- surface composition
- surface bonding chemistry (sputtered fragments)

Example: SIMS of silica powder

Negative spectrum

SIMS vs. XPS/AES

Advantages

Disadvantages

- not quantitative

- high sensitivity (ppm ppb)
- more sensitive to top surface
- applicable to any solid

Dynamic SIMS

- ➤ 1-20 keV primary beam
- ➤ rastered beam sputters a crater in sample
- ➤ secondary ions gives depth profiling

20

sputter time

References

J.C. Vickerman, Ed., *Surface Analysis—The Principle Techniques*, J. Wiley & Sons: New York, NY, 1997, Chapters 3, 4 & 5.

D. Briggs, *Surface Analysis of Polymers by XPS and Static SIMS*, Cambridge University Press: United Kingdom, 1998.

C.-M. Chan, *Polymer Surface Modification and Characterization*, Hanson: Cincinnati, OH: 1994, Chapters 3 & 4.

P.J. Cumpson, "Angle-resolved XPS and AES: depth-resolution limits and a general comparison of properties of depth-profile reconstruction methods", *J. Electron Spectroscopy* **73** (1995) 25-52.

B. Elsener and A. Rossi, "XPS investigation of passive films on amorphous Fe-Cr alloys", *Electrochimica Acta* **37** (1992) 2269-2276.

A.M. Belu, D.J. Graham and D.G. Castner, "Time-of-flight secondary ion mass spectroscopy: techniques and applications for the characterization of biomaterial surfaces", *Biomaterials* **24**, (2003) 3635-3653.