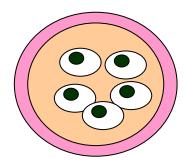
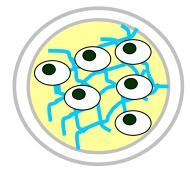
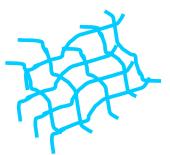
Lecture 22 Tissue Engineering


Tissue Engineering: a field that seeks to replace, repair or enhance biological function at the scale of a tissue or organ by manipulating cells via their extracellular environment


Objectives:


- 1. Fulfill a biomechanical role (bone, cartilage)
- 2. Replace physiological function (liver, nerve)
- 3. Deliver secretory products (insulin)
- 4. A combination of the above

3 Main Approaches:

- 1. Extracorpeal/cell encapsulation (3)
- 2. In vitro synthesis (1-4)
- 3. In vivo synthesis (1-4)

1. Extracorpeal/Cell Encapsulation

Method:

- 1. Encapsulate cells of interest in semipermeable membrane
- 2. Implant encapsulated device or connect ex vivo
- 3. Cells secrete product \Rightarrow therapy
- 4. Remove/disconnect device when therapy concluded

Advantages:

- Natural theraputic response from living cells
- Use of nonhost cells—immunoisolation

Issues:

- Potential for undesirable immune response from adsorption of complement proteins (similar to blood filtration membranes)
- Potential for thrombosis formation

(Anti-coagulants used during ex vivo treatment)

Potential for rupture of implanted devices

Applications Investigated:

- Diabetes treatment*
- Chronic pain*
- Neurodegenerative diseases: ALS (Lou Gehrig's disease, neuromuscular), Parkinson's, Alzheimer's, Huntington's disease (progressive brain death)
- ➤ Dwarfism
- ➢ Anemia/Hemophelia
- Macular degeneration (blindness)
- ➤ Cancer
- Liver Failure*

* = clinical trials

Device Examples

Encapsulated Islets (Islet Technology Inc., St Paul, MN) **CapCell:** implantable membrane-encapsulated islets for glucose regulation

Cells: insulin-producing islets Use: long-term treatment of diabetes Device: alginate-based membrane confines islets Treatment: islets transplanted into patient's pancreas; patients' blood flows thru membrane; islets detect glucose level variations & respond through insulin production Status: preclinical trials (islet transplantation in clinical trials)

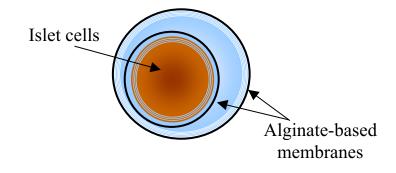


Figure by MIT OCW.

Arbios Systems, Inc. (recently acquired from Circe Biomedical)

HepatAssist System: an extracorporeal, bioartificial liver support system

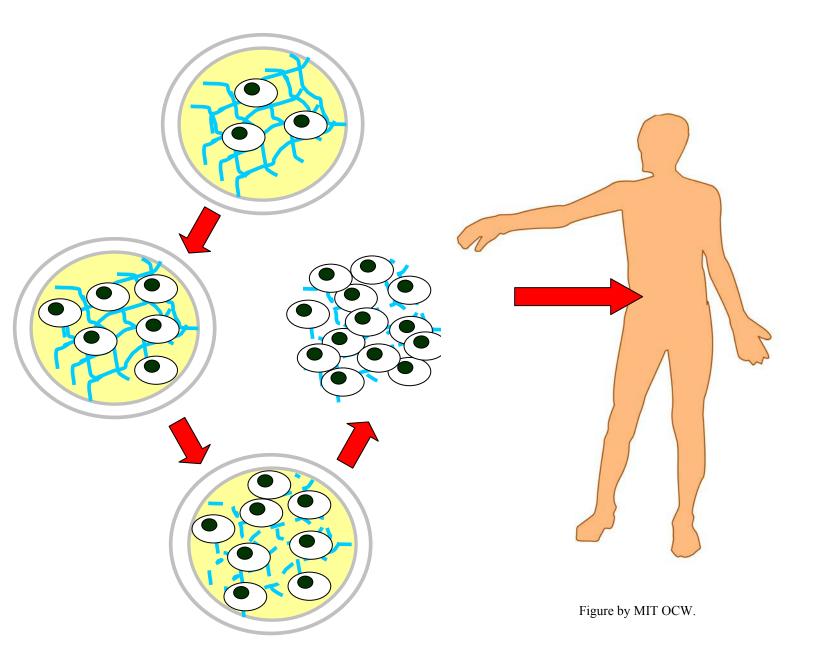

Cells: primary porcine hepatocytes (pig liver cells) Use: temporary liver function for transplant candidates Device: hollow fiber bioreactor, oxygenator, pump Treatment: plasma circulated through bioreactor and recombined with blood cells Status: Phase I trials completed

Figure removed for copyright reasons.

2. In vitro Synthesis

Method:

- 1. Cells seeded in vitro on scaffold device
- 2. Cells maintained in culture to expand population & develop tissue organization (in static culture or bioreactors)
- 3. Device implanted once cell colony is established
- 4. Device degrades, scaffold replaced by remodeled tissue

Advantages:

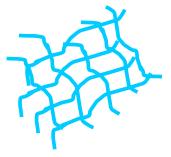
- Natural theraputic response from living tissues
- Permanent therapy
- > Allows control and quantification not easily obtained in vivo

Issues:

- Cell sources
 - possibility of rejection
 - tumorogenicity-cell lines
- Full organ restoration challenges (e.g., skin)

Applications Investigated:

- Vasculature (resorbable & nonresorbable)
- Liver tissue
- Nerve tissue
- ➤ Cartilage*
- ≻ Cornea*
- ➢ Bladder*
- ➤ Skin*
- ➢ Bone
- ➤ Ligament
- ➤ Tendon
- ➤ Muscle
- ➤ Heart valve
- ≻ Heart


Link to list of websites of tissue engineering companies:

http://www.cs.cmu.edu/~webwatch/text_only_industry.html

3. In vivo synthesis

Method:

- 1. Implant porous scaffold device
- 2. Cellular ingrowth in vivo
- 3. Scaffold replaced by remodeled tissue

Advantages:

- Natural theraputic response from living tissues
- Permanent therapy
- ➢ No cell source problems

Issues:

Uncontrolled biological response to implanted scaffold

Applications Investigated:

- > Vasculature
- ➤ Skin*
- ➢ Bone*
- ≻ Nerve
- ➤ Ligament
- Cartilage (Knee Meniscus)

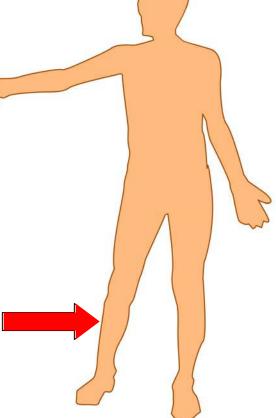
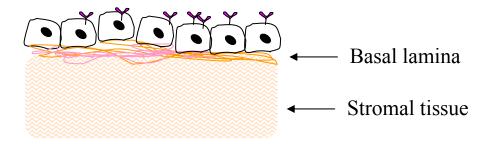


Figure by MIT OCW.

Scaffolds for Tissue Generation

Purpose: replace functions of extracellular matrix (ECM)


ECM functions:

- 1. cell anchorage
- 2. cell orientation
- 3. cell growth
- 4. mechanical integrity to neo-tissue
- 5. tissue microenvironment
- 6. cell differentiation
- 7. sequester, store & present soluble regulatory proteins
- 8. blueprint for tissue organization (e.g., biomineralized tissue)

ECM types:

Basal Lamina (basement membrane): directly underlying epithelial cells; contains laminin, collagen, fibronectin, vitronectin

Stromal tissue (interstitial matrix): provides structural integrity; contains matrix-secreting cells (fibroblasts, osteoblasts), collagen, elastin, fibrillin, fibronectin, vitronectin, GAGs, glycoproteins, regulatory proteins

Resorbable Tissue Engineering Scaffolds:

- Collagen-matrix

 e.g., artificial skin
 drawback: immunogenic
- 2. Biodegradable polymers: PLA, PGA, PLGA e.g., cartilage drawback: no adhesion sites (can build in RGD)
- 3. Hydroxyapatite, Bioglass

e.g., bone regeneration drawback: brittle, low strength


Processing of Tissue Engineering Devices

A. Design Issues

1. Cell density must be sufficiently high to enable tissue formation, deliver therapy

2. Transport of nutrients/oxygen/waste

nutrients must reach cells within the scaffold/encapsulation device

Limiting distance from nutrients can be gauged from the *Thiele modulus*, *S* (dimensionless ratio of consumption to supply)

$$S = \frac{k\rho x^2}{DC_o}$$

$$D = \text{nutrient diffusivity in device (cm2/sec)}$$

$$C_o = \text{nutrient concentration at source (mol/cm3)}$$

$$k = \text{cell nutrient uptake rate constant (mol/sec/cell)}$$

$$x = \text{distance from nutrient source (bloodstream) (cm)}$$

$$\rho = \text{cell density in device (cells/cm3)}$$

$$S >> 1 \implies$$
 cells consume more than can be delivered

$$S << 1 \Rightarrow$$
 supply greater than demand

 $S = 1 \Rightarrow$ supply balances demand; use as limit estimate for device design

A rule of thumb in designing tissue engineering devices: $x_{max} = 500 \mu m$.

3. Mechanical support

- Critical problem for hard tissue scaffolds

- Influenced by

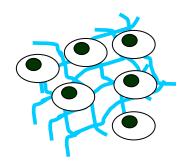
- materials choices
- processing (orientation of polymers & composites)
- 4. Tissue organization blueprint

Cell migration guidance chemical & morphology effects (chemo/hapto/durotaxis)

Cell Patterning

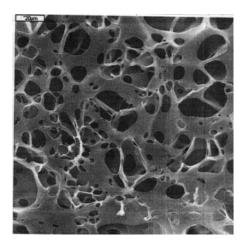
microcontact printing, microlithography

Spatial Organization of Muliple Cell Types

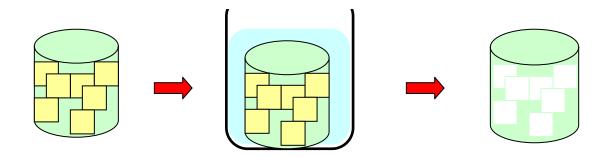

- most organs of more than one cell type
- pattern based on different ligands, ligand densities, ligand affinities

B. Scaffold Fabrication

Objective: Continuous, high-surface area scaffolds


1. Fabrics

- ➢ Woven/nonwoven fibers
- → Mechanical interlocking \Rightarrow pliable, 3D matrix
- Porosity and pore size roughly controlled

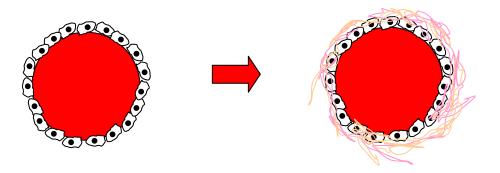

2. Bonded fibers

- ▶ PGA fibers dipped in PLLA/CH₂Cl₂ solution
- > Heat treat fibers at $T_{g,PGA} < T < T_{m,PLLA}$ to bond PGA to PGA
- Dissolve away PLLA
- Improved mechanical properties over fabrics; similar porosity
- 3. Freeze-dried Foams
 - ▶ Polymer solution immersed in liquid $N_2 \Rightarrow$ phase separation
 - Frozen solvent sublimates leaving porous scaffold
 - ▶ Pore size ~ λ of spinodal decomposition \Rightarrow controlled pore structure

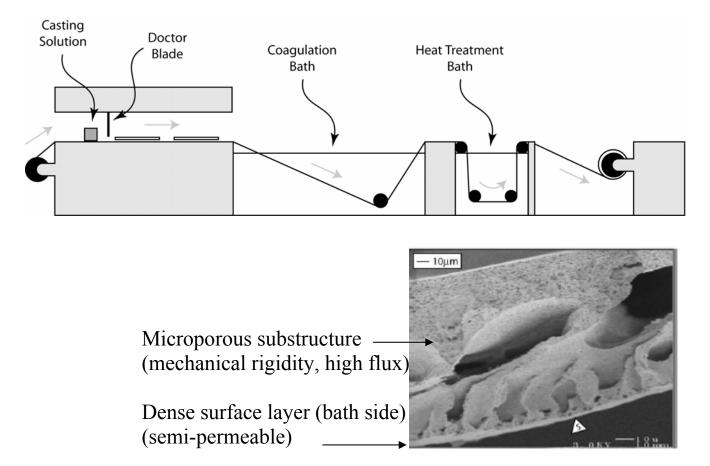
4. Salt-leached Foams

- polymer solution mixed with uniform salt crystals
- Solvent evaporates leaving solid polymer/salt composite
- > Immerse in H_2O to leach out salt
- Controlled porosities up to 93% (< 2 mm thick)</p>

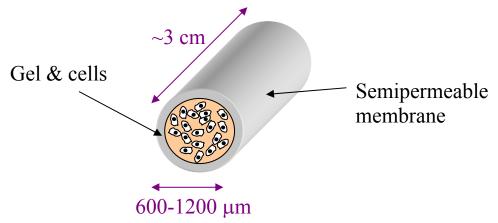
5. 3D Printing


- Cast a bed of polymer powder (e.g., PLGA)
- "Print" micron-sized droplets of solvent at desired points (chloroform)
- Congealed powder solidifies as solvent evaporates
- Repeat process, building up 3D structure
- Shake out uncongealed powder
- Precisely structured micron-porous polymer or ceramic scaffolds

C. Encapsulation Methods


1. Encapsulation Microspheres

- Cells attach to surface of polymer microspheres
- \triangleright Cell-coated spheres suspended in weak polycation (polylysine $-NH_3^+$)
- Add polyanion (e.g. sodium alginate, -COO⁻)
- Polyelectrolytes form precipitated, porous complex around cells (Complex coacervation)
- Single microbeads contain a few hundred cells (thousands needed for therapy)



2. Encapsulation Membranes

- Cast concentrated solution onto substrate (flat or tubular)
- Substrate immersed into a nonsolvent bath
- Coagulation of asymmetric membrane results

Cells suspended in gel within sealed membrane tube (length ~ 3 cm) or disk (dia ~ 2-3 cm)

- Membrane characteristics
 - Molecular weight cutoff: typically ~30-70 kg/mol (<100 nm dia. pores)

Note: Ab ~150 kg/mol

Molecule/Moiety	Size
O_2 , H_2O , salts	2-3 Å
Lipids, glucose	10 Å
Serum proteins, endotoxins	100 Å
Viruses	1000 Å
Bacteria	10 ⁴ Å
White blood cells, platelets	10 ⁵ Å

- Matrix examples: polysaccharides, alginate/chitosan coacervate, collagen
- Body: PAN-PVC, PP, polycarbonate, cellulose nitrate, acrylic
- Shape & Size: disks vs. tubes

	Disks	Tubes
Mass transport	Favored	diameter restrictions
Susceptibility to clotting	high surface area increases clot propensity	favored
Cell #	50-100M	5M

	Cell # required
Diabetes	109
Clotting factor	10 ⁷ -10 ⁸
CNS therapies	10 ⁶ -10 ⁷

D. Current Challenges

1. Micromechanical effects

Cell differentiation and growth (especially in load-bearing tissues) can be affected by micromechanical stresses transmitted by the scaffold

- 2. Cell function deterioration
- 3. Cross-application to other areas (gene therapy, drug delivery)
- 4. Multicellular tissues and organs
 - Complex, multicomponent structures (vascularized tissues)
 - Regeneration-inducing factors (proteins) only known for blood & bone

Cell type	Tissue Function	Example
epithelial	covers external (ex, skin) & internal (ex, intestine, blood vessel) organ surfaces	endothelial cells
connective	supports other body tissues; houses nerves & blood vessels	fibroblasts (ECM generation), cartilage, bone
muscle	specialized for contraction;	smooth, skeletal, cardiac
nerve	generate electrical signals & secrete neurotransmitters	brain cells, peripheral nerve

Basic Tissue Cell Types and Functions

Skin cell

Muscle cell

Granule cell

ういうい

Bone cell

Figure by MIT OCW.

Cell Regeneration Capability

Category	Normal replic. rate	Response to injury	Examples
renewing/ labile	High; via stem cell differentiation	modest ↑	skin, intenstinal mucosa, bone marrow
Expanding/ stable	Low	large ↑	endothelium, fibroblasts, hepatocytes, osteoblasts
Static/ permanent	None	No replication; replaced by scar tissue	heart muscle cells, nerve cells