# Lecture 6: Protein-Surface Interactions ( Part II)

The Langmuir model is applicable to numerous <u>reversible</u> adsorption processes, but fails to capture many aspects of protein adsorption.

1. Competitive Adsorption

- many different globular proteins in vivo
- > surface distribution depends on  $[P_i]$ 's & *time*



*The Vroman effect*: Displacement (over time) of initially adsorbed protein by a second protein.



| Protein             | Plasma conc. (mg/ml) | MW (Daltons)  |
|---------------------|----------------------|---------------|
| Human serum albumin | 42                   | 68,500        |
| Immunoglobulins     | 28                   | 145,000 (IgG) |
| Fibrinogen          | 3.0                  | 340,000       |
| Fibronectin         | 0.3                  | 240,000       |
| Vitronectin         | 0.2                  | 60,000        |

Plasma – fluid component of blood with anticoagulant added Serum – fluid component of blood with coagulants removed

## Hypothesis:

- At t~0: uniform  $[P_i]$ 's everywhere  $\Rightarrow$  protein with highest concentration dominates initial adsorption
- At t>0: local depletion of adsorbed species near surface- exchange with faster diffusing species ensues
- At t>>0: gradual exchange with higher affinity species

#### 2. Irreversible Adsorption

- occurs in vivo & in vitro: proteins often do not desorb after prolonged exposure to protein solutions
- complicates the competitive adsorption picture



## Physiological implications:

- a) hydrophobic surfaces cause more denaturing
- b) denatured proteins may ultimately desorb (by replacement)  $\Rightarrow$  non-native solution behavior

Models that attempt to account for 1 & 2:

S.M. Slack and T.A. Horbett, *J. Colloid & Intfc Sci.* 133, 1989 p. 148
I. Lundstroem and H. Elwing, *J. Colloid & Intfc Sci.* 136, 1990 p. 68
C.F. Lu, A. Nadarajah, and K.K. Chittur, *J. Coll. & Intfc Sci.* 168, 1994 p. 152

## 3. Restructuring

Protein layers reaching monolayer saturation can reorganize (e.g., crystallize) on surface, creating a stepped isotherm



# 4. Multilayer Formation

Proteins can adsorb atop protein monolayers or sublayers, creating complicated adsorption profiles



# **Measurement of Adsorbed Proteins**

# 1. Techniques for Quantifying Adsorbed Amount

a) *Labeling Methods*: tag protein for quantification, use known standards for calibration

- i) Radioisotopic labeling
  - proteins labeled with radioactive isotopes that react with specific a.a. residues

e.g., tyrosine labeling with <sup>125</sup>I; <sup>131</sup>I; <sup>32</sup>P



Small % radioactive proteins added to unlabelled protein
 γ counts measured and calibrated to give cpm/µg

Advantage: high signal-to-noise  $\Rightarrow$  measure small amts (ng)

**Disads:** dangerous  $\gamma$  emissions, waste disposal, requires protein isolation

ii) Fluorescent labels

measure fluorescence from optical excitation of tag

e.g., fluorescein isothiocyanate (FITC)



Advantage: safe chemistry

*Disads:* tag may interfere with adsorption, requires protein isolation, low signal

# iii) Staining

molecular label is adsorbed to proteins *post facto* 

e.g., organic dyes; antibodies (e.g, FITC-labeled)

Advantages: safe chemistry, no protein isolation/modification

*Disads:* nonspecific adsorption of staining agents (high noise)

b) Other Quantification Methods

i) HPLC on supernatants (w/ UV detection)

- ii) XPS signal intensity, e.g., N<sup>1s</sup> (relative to controls)
- iii) Ellipsometry—adsorbed layer thickness (dry)

# 2. Techniques for Studying Adsorption Kinetics

# a) In situ Ellipsometry



- polarized light reflected from a surface
- phase & amplitude changes to parallel (p) and perpendicular (s) E-field components

 $E_i$ ,  $E_r$  = incident/reflected E-field

reflection coefficients: 
$$r_p = \frac{E_{rp}}{E_{ip}} = |r_p| \cdot e^{i\delta_p}$$
 and  $r_s = \frac{E_{rs}}{E_{is}} = |r_s| \cdot e^{i\delta_s}$   
ratio of amplitudes:  $\tan \Psi = \frac{|r_p|}{|r_s|}$  phase difference:  $\Delta = \delta_p - \delta_s$ 

Experimental set-up





Adsorbed protein layer changes the refractive index adjacent to the substrate.

Ellipsometric angles  $\Psi$  and  $\Delta$  can be converted to adsorbed layer thickness  $(d_f)$  & refractive index  $(n_f)$  assuming 3-layer model & Fresnel optics

> adsorbed amount: 
$$\Gamma = d_f \frac{n_f - n_l}{dn/dc}$$
  
R.I. increment of protein solution  
vs. protein conc. (~0.2 ml/g)

Advantages: no protein isolation; fast; easy; in situ; sensitive

*Disads:* quantitation requires a model, optically flat & reflective substrates required; can't distinguish different proteins

#### **References:**

P. Tengvall, I. Lundstrom, B. Liedburg, *Biomaterials* 19, 1998: 407-422.H.G. Tompkins, A User's Guide to Ellipsometry, Academic Press: San Diego, 1993.

## b) Surface Plasmon Resonance

Experimental set-up: polarized light reflects at interface between glass with deposited metal film and liquid flow cell



- Theoretical basis:
  - light traveling through high *n* medium (glass) will reflect back into that medium at an interface with material of lower *n* (air/water)
  - total internal reflection for  $\theta > \theta_{critical}$

$$\theta_{critical} = \sin^{-1} \left( \frac{n_{low}}{n_{high}} \right)$$

- surface plasmons—charge density waves (free oscillating electrons) that propagate along interface between metal and dielectric (protein soln)
- coupling of evanescent wave to plasmons in metal film occurs for  $\theta = \theta_{spr}$  (>  $\theta_{critcal}$ ) corresponding to the condition:

$$K_{sp} = K_{Ev}$$



$$K_{Ev} = n_{glass} \frac{\omega_0}{c} \sin \theta$$
$$K_{sp} = \frac{\omega_0}{c} \sqrt{\frac{\varepsilon_{metal} n_{surface}^2}{\varepsilon_{metal} + n_{surface}^2}}$$

- Energy transfer to metal film reduces reflected light intensity
- change of  $n_{surface}$  due to adsorption of protein at interface will shift  $\theta_{spr}$  where  $K_{sp} = K_{Ev}$



Figure by MIT OCW



Courtesy of Biacore. Used with permission.



Resonance shift fitted to:

$$R(t) = (R_{\infty} - R_0) \left[ 1 - \exp(-k_{obs}t) \right] + R_0 \quad \rightarrow \text{ obtain } k_{obs}$$

linear fit of:

$$k_{obs} = k_d + k_a [P] \rightarrow \text{obtain } k_d, k_a$$

- more complex fitting expressions for R(t) often required

-  $k_d$  alternatively obtained from dissociation data:  $R(t) = R_0 \exp(-k_d t)$ 

Advantages: no protein labeling, controlled kinetic studies, sensitive

*Disads:* requires "model" surface preparation—limited applicability

**References:** 

R.J. Green, et al., *Biomaterials* **21**, 2000: 1823-1835. P.R. Edwards et al., *J. Molec. Recog.* **10**, 1997: 128-134.

# 3. Extent of Denaturing

## **Ellipsometry**

Variations in thickness (d<sub>f</sub>) & refractive index (n<sub>f</sub>) of adsorbed layer over time gives indication of denaturation (inconclusive)

## **Circular Dichroism**

Experimental set-up: monochromatic, plane-polarized light is passed through a sample solution and detected



Theoretical basis: unequal absorption of R- and L-components of polarized light by *chiral molecules* (e.g., proteins!)



The ellipticity  $\psi$  is related to the difference in L and R absorption by:

$$\psi = \frac{2.303}{4} (A_L - A_R) \frac{180}{\pi}$$
 (degrees)

where 
$$A = -\log T = -\log \frac{I}{I_0} = \varepsilon c_p l$$

(Beer's Law)

Molar ellipticity: 
$$\left[\theta\right] = \frac{\psi \cdot M_p}{c_p l}$$

 $c_p$  = protein conc. (g/cm<sup>3</sup>)  $\epsilon$  = molar extinction coeff. (cm<sup>2</sup>/g) l = path length (cm)  $M_p$  = protein mol. weight (g/mol) T = transmittance

- Ellipticity can be + or -; depends on electronic transition (π-π\* vs. n-π\*)
- Proteins exhibit different values of  $[\theta]$  for  $\alpha$  helix,  $\beta$  sheet, and random coil conformations in the far UV.

| Conformation   | Wavelength (nm) | Transition            |
|----------------|-----------------|-----------------------|
| $\alpha$ helix | 222 (-)         | n- $\pi^*$ peptide    |
| $\alpha$ helix | 208 (-)         | $\pi - \pi^*$ peptide |
| $\alpha$ helix | 192 (+)         | $\pi - \pi^*$ peptide |
| β sheet        | 216 (-)         | n- $\pi^*$ peptide    |
| β sheet        | 195 (+)         | $\pi - \pi^*$ peptide |
| β sheet        | 175 (-)         | $\pi - \pi^*$ peptide |





Changes to CD spectra give a measure of *denaturation*, e.g., due to adsorption at a surface



CD spectra for the synthetic peptide: Ac-DDDDDAAAARRRR-Am

(a) in pH 7 solution

(b-e) adsorbed to colloidal silica: b) pH 6.8; c) pH 7.9; d) pH 9.2; e) pH 11.3 After

Figure by MIT OCW. [After S.L. Burkett and M.J. Read, Langmuir 17, 5059 (2001).] For quantitative comparisons, molar ellipticity per residue is computed, by dividing  $[\theta]$  by the number of residues in the protein  $(n_r)$ .

$$\left[\theta\right]_{mrd} = \frac{\psi \cdot M_p}{10n_r c_p l} = \frac{\psi \cdot \overline{M_r}}{10c_p l} \qquad \text{units: deg cm}^2 \, \text{dmol}^{-1}$$

% of  $\alpha$  helix,  $\beta$  sheet, and random coil conformations obtained by linear deconvolution using "standard curves" from homopolypeptides such as poly(L-lysine) in 100%  $\alpha$  helix,  $\beta$  sheet, and random coil conformations.



http://web.archive.org/web/20050208092958/http://www-structure.llnl.gov/cd/cdtutorial.htm

For a rough estimate of  $\alpha$ -helix content, the following expressions have been employed:

$$\alpha - helix\% = \frac{[\theta]_{208} - 4000}{33,000 - 4000} \quad \text{from } [\theta]_{mrd} \text{ data at } 208 \text{ nm}$$
$$\alpha - helix\% = \frac{[\theta]_{222}}{40,000} \quad \text{from } [\theta]_{mrd} \text{ data at } 222 \text{ nm}$$

Advantages: no labeling required; simple set-up

*Disads:* need experimental geometry with high surface area, e.g., colloidal particles (high signal)

#### **References:**

N. Berova, K. Nakanishi and R.W. Woody, eds., Circular Dichroism: Principles and Applications, 2<sup>nd</sup> ed., Wiley-VCH: NY; 2000.

N. Greenfield and G.D. Fasman, Biochemistry 8 (1969) 4108-4116.