Lecture 16-17, Sandwich Panel Notes, 3.054

Sandwich Panels

e Two stiff strong skins separated by a lightweight core
e Separation of skins by core increases moment of inertia, with little increase in weight
e Efficient for resisting bending and buckling

e Like an I beam: faces = flanges — carry normal stress
core = web — carries shear stress

e Examples: engineering and nature

e Faces: composites, metals
Cores: honeycombs, foams, balsa
honeycombs: lighter then foam cores for required stiffness, strength
foams: heavier, but can also provide thermal insulation

e Mechanical behavior depends on face and core properties and/or geometry
e Typically, panel must have some required stiffness and/or strength

e Often, want to minimize weight — optimization problem
e.g. refrigerated vehicles; sporting equipment (sail boats, skis)
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Figure removed due to copyright restrictions. See Figure 9.4:
Gibson, L. J. and M. F. Ashby. Cellular Solids: Structure and
Properties. Cambridge University Press, 1997.

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.
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Sandwich beam stiffness

e Analyze beams here (simpler than plates; same ideas apply)

Face: py, Ky, oy¢

b

- ‘ Core: p;, L7, of

(Solid: ps, Es, oys )

v
Typically £} < Ey

B.M. i -

§=0,+0, : bending deflection ¢, and shear deflection (of core) J;

since G < Ey, core sheer deflections significant
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Oy = L Bi=constant, depending on loading configuration
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Sandwich structures: typically £y > E? and ¢ >t

E btc?
Approximate (E1 )¢, ~ ! 5 ‘
r
z+
S
0s =7 core [4 ' -
r A
Lig
5. Pl
* By (AG),,
b(c+t)?
(AG)eq = m G.=~b.G.
0 = 0p + 0
2P[3 Pl

T BEbiE BhbeG

And also note:

G = Cy Ey(p*/ps)* (foam model)

Cc

02 %3/8

T =Gy
P 5,
1%67



Minimum weight for a given stiffness

e Given face and core materials

(ps opt

Note:

o beam length, width, loading geometry (e.g. 3 pt bend, By, By)

Find: face and core thicknesses, t 4 ¢, and core density p) to minimize weight
W =2prgbtli+p.bcl

Solve P/§ equation for p! and substitute into weight equation

Solve 0W/0c = 0 and OW /0t = 0 to get topt, Copt

Substitute topt, Copt into stiffness equation (P/d) to get pk op

Note that optimization possible by foam modeling G. = Cs (p*/ps)? E
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The design of sandwich panels with foam cores

Table 9.3 Optimum design of a sandwich panel subject (o a stiffness constraint

Formulate objective function for the weight of the beam
W = 2p:gblt + pighic (Lgn. (9.7))

|

Formulate the stiffness constraint ‘

‘ 2r
&/ P (Eqn.(9.6))

"~ B Echic? + BobeG

|

Solve stiffness constraint for one variable (e.g. pt)

2

: B, E Ite e ,
o= S, . S— . (Eqn.(9.8
e {c,‘232 E, (B]hz(.'zlz'r(é/i’)—2/3)} A (Ban.98))

and substitute this into the objective function

|

Form W [dc = 0and OW [0 = 0
and solve 1o give
Copt = f(8/ P, material properties, beam geometry )
top = f (6] P, material properties, beam geometry )
Substitute these into Eqn. (9.8 ) for core density to give optimum density, Peopt-

l

Final Result:

Optimum As function of
Core thickness, ¢, Design stiffness, 6/ P
Face thickness, £, ] Material properties, pr, py. Ep. Fy, Ca
Core density, pigp f Loading geometry, B, B>, 1, b

Table 9.4 Optimization analysis for sandwich pancls subject to a stiffness constraint

Geometry WeiW,  6,/6 8/
Rectangular beam 1/4 1/3 2/3
Circular plate (distributed load over entire plate) 1/4 1/3 2/3
Circular plate (distributed load over radius r) 1/4 1/3 2/3

Gibson, L. 1., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Table courtesy of Lorna Gibson and Cambridge University Press.



Comparison with experiments

o All faces with rigid PU foam core
Ge= 0.7 E; (pe/ps)?

Beams designed to have same stiffness, P/J, span 1, width, b

One set had p} = p opt, varied t, c

One set had t = t.p, varied p}, c

One set had ¢ = cqpt, varied t, p

Confirms minimum weight design; similar results with circular sandwich plates

Strength of sandwich beams

e Stresses in sandwich beams
Normal stresses

My c 2 M

Ej=Ms——" _pr=—

T ED, T 2B bt T bt
My c 2 M EZ
c = FE=M-——--FE=— %
7T (ED)., 2E bt ¢ bt By

Since E < Ey o. < oy = faces carry almost all normal stress



Minimum Weight Design
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Figures 7, 8, 9: Gibson, L. J. "Optimization of Stiffness in Sandwich Beams with Rigid Foam Cores."

Material Science and Engineering 67 (1984): 125-35. Courtesy of Elsevier. Used with permission.


http://www.sciencedirect.com/science/article/pii/0025541684900430

e For beam loaded by a concentrated load, P (e.g. 3 pt bend)

Pl
Mok = oA e.g. 3 pt bend Bs = 4; cantilever B3 = 1
3

Pl
B Bg btc

of

e Shear stresses vary parabolically through the cross-section, but if

Er>FE:and c>1 T, = lc V = shear force at section of interest

P P
_ Viax = —  e.g. 3 pt bend By = 2
B4 be B4 =8 b o 4

Te

Failure modes

face: can yield
compressible face can buckle locally — “wrinkling”
core: can fail in shear
also: can have debonding and indentation
we will assume perfect bond and load distributed sufficiently to avoid indentation



[

Stresses

P T
/OE . Face: Normal stress
/ Core: Shear stress
(a) (b) (c) N
G g

/Or Approximate stress
) . distributions, for:
j E_<<E;and t<<c

(d)

(e) (f)

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.
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Failure Modes

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.
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(a)

(b)

Face yielding
Pl

B Bsbtc:%f

Face wrinkling: when normal stress in the face = local buckling stress

af

Obuckling = 0.57 Ejle/ ? E: 2/3 buckling on an elastic foundation

E: = (p:/ps)* Es
Obuckling = 0.57 Ejl/g E§/3 (Pz/Ps)4/3

Pl
Bsbtc

wrinkling occurs when oy = = 0.57 E}/g E23 (pf ) ps)*?

Core shear failure

P
—C = 011 (pz/ps)S/Q O'ys Cll ~ 0.15
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Dominant failure load is the one that occurs at the lowest load

How does the failure mode depend on the beam design?

Look at transition from one failure mode to another

At the transition — two failure modes occur at same load

face yielding: Py, = Bsbc(t/l) oy¢
face wrinkling: Py, = 0.57 B3 bc (t/]) E}/S E23 (pF [ ps) 3

core shear: P., = C11 Bybc oy (pi/ps)?

e Face yielding and face wrinkling occur at some load if

Bybe (t/1) oy = 0.57 Bsbe (/1) Ef* B¥ (o5 /ps)*?

3/4
* Oyf
or (pc/ps) - .
(0.57 B* B2

i.e. for given face and core materials, at constant (p’/ps)

13
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[ Bg E Oyf

Face yield — core shear

t CnB s *\1/6
Face wrinkling — core shear e ( - /Zy 2/3) (&>
L~ 0578y \gPP g2 \p,

Note: transition equation only involve constants (C1; Bs By), material properties (Ey, Ey, 0,5) and
t/l, p:/ps; do not involve core thickness, ¢

Can plot transition equation on plot with axes p}/ps and t/I

Values of axes chosen to represent realistic values of
P/ ps — typically 0.02 to 0.3
t/l — typically 1/2000 to 1/200 = 0.0005 to 0.005
Low values of t/l and p}/ps = face wrinkling
o t thin and core stiffness, which acts as elastic foundation, low

Low values t/l, higher values p}/ps; = transition to face yielding

Higher values of ¢/l = transition to core failure

14
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Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.
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Failure Map: Expts
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Figures 12 and 13: Triantafillou, T. C., and L. J. Gibson. "Failure Mode Maps for Foam Core Sandwich Beams."
Materials Science and Engineering 95 (1987): 37-53. Courtesy of Elsevier. Used with permission.
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Map shown in figure for three point bending (By = 4, By, = 2)

Changing loading configuration moves boundaries a little, but overall, picture similar

Expts on sandwich beams with Al faces and rigid PU foam cores confirm equation

If know b, ¢ — can add contours of failure loads

Minimum weight design for stiffness and strength: t,,, c,

Given: stiffness P/¢ Find: face and core thickness, t, ¢
strength Fy to minimize weight
span 1 width D
loading configuration (B By B3 By)
face material (pf, oyf, Ef)
core material and density (ps, Es, oys, p)

17



Can obtain solution graphically, axes ¢/l and ¢/l

Equation for stiffness constraint and each failure mode plotted
Dashed lines — contours of weight

Design-limiting constraints are stiffness and face yielding
Optimum point — where they intersect

Could add (p}/ps) as variable on third axis and create surfaces for stiffness and failure equation; find
optimum in the same way

Analytical solution possible but cumbersome

Also, values of ¢/l obtained this way may be unreasonably large — then have to introduce an
additional constraint on ¢/ (e.g. ¢/1 < 0.1)

18



-~V FAILURE OPTIMUM SANDWICH DESIGN
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Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.
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Minimum weight design: materials

e What are best materials for face and core? (stiffness constraint)

Go back to min. wt. design for stiffness

Can substitute (p})opt; topt, Copt ito weight equation to get min. wt.:

1/5
1 pppl (}i>3 :

W =3.18b
By B3C; EfE2\§b

Faces: W minimized with materials that minimize py/E; (or maximize E;/py)

Core: W minimized with materials that minimize p!/E? (or maximize joRe /ps)

e Note: o faces of sandwich loaded by normal stress, axially
if have solid material loaded axially, want to maximize F/p
o core loaded in shear and in the foam, cell edges bend
if have solid material, loaded as beam in bending and want to minimize
weight for a given stiffness, maximize E/2/p

Sandwich panels may have face and core same material: e.g. Al faces Al foam core
integral polymer face and core
o then want to maximize E%/° /p “structural polymer foams”

Case study: Downhill ski design

e Stiffness of ski gives skier right “feel”

e Too flexible — difficult to control

20



Too stiff — skier suspended, as on a plank, between bumps
Skis designed primarily for stiffness

Originally skis made from a single piece of wood

Next — laminated wood skis with denser wood (ash, hickory) on top of lighter wood core (pine,
spruce)
Modern skis  — sandwich beams

— faces — fiber composites or Al trols stiff
controls stiffness
— core — honecombs, foams (e.g. rigid PU), balsa

Additional materials
o bottom-layer of polyethylene — reduces friction
o short strip phenol — screw binding in
o neoprene strip ~ 300 mm long — damping

o steel edges — better control

21



Ski Case Study
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Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.
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Ski case study

e Properties of face and core material

Al Solid PU Foam PU

p(Mg/m?) 2.7 1.2 0.53
E GPa 70 1.94 0.38
G GPa  — — 0.14

e Ski geometry

o Al faces constant thickness t

o PU foam core — c varies along length, thickest at center, where moment highest

o ski cambered

o mass of ski = 1.3 kg (central 1.7 m, neglecting tip and tail)

23



Ski Case Study i
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Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.
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Bending stiffness

Plot ¢ vs. x, distance along ski

Calculated (EI)eq vs. x

Calculated moment applied vs. x

Get M/(EI)eq vs. x

Can then find bending deflection, 6, = 0.28 P

Shear deflection found from avg. equiv. shear rigidity
Pl
0s =
(AG)eq
d=0,+0ds=029P P/6 = 3.5 N/mm measured P/§ = 3.5 N/mm

= 0.0045 P

Note current design 0, < dp; at optimum d; ~ 26, (constant c)
Can ski be redesigned to give same stiffness, P/J, at lower weight?

If use optimization method described earlier (assuming c=constant along length)

Copt="70 mm mass=0.31kg = 75% reduction from current design
topt=0.095 mm

Pe opt=29 kg/m? But this design impractical = c¢ too large, t too small

25



Alternative approach:
e Fix ¢ = max value practical under binding and profile ¢ to give constant M/(EI)e, along length of
ski (use Cpax = 15 mm)
e Find values of t, p} to minimize weight for P/p=3.5 N/mm
e Moment M varies linearly along the length of the ski
e Want (EI)., to vary linearly, too; (El)eq = Ef bt c*/2
e Want ¢ xx /x, distance along length of ski
e Half length of ski is 870 mm and ¢ =15 mm

1/2
c=15 <%> = 0.51 z'/? (mm)

e Can now do minimum weight analysis with

P32 Pl

5 p—
Bl Ef bt (Cmagc + t)2 + BQ CQ b Cmax(pz/ps)zEs

26



/l M= Px
) Efbtcz

(EI)eq' 2

/ c = 0.5k
M CONSTANT
(EI)eq
forte i
38mm 870mm

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.



e B; — corresponds to beams with constant M /EI

e By, — cantilever value (By = 1) multiplied by average value of ¢ divided by maximum value
of ¢ By =2/3
0
e Solve stiffness equation for p}, substitute into weight equation and take a—j =0
e Solve for topt, then pg o
e Find: Cmaz=15 mm Pk opy=1.63 kg/m?
topt = 1.03 mm mass = 0.88 kg = 31% less than current design
Daedalus

e MIT designed and built human powered aircraft (1980s)
e Flew 72 miles in ~ 4 hours from Crete to Santorini, 1988

e Kanellos Kanellopoulos — Greek bicycle champion pedaled and flew

mass 68.57 = 31 kg propeller: kevlar faces, PS foam core (11’ long)
length 29" = 8.8 m wiring and trailing edge strips kevlar faces / rohacell foam core
wingspin 112" = 34 m tail surface struts: carbon composite faces, balsa core

28



Daedalus
Mass = 31 kg

Length = 8.8m
Wingspan = 34m

Propeller blades = 3.4m

Courtesy of NASA. Image is in the public domain. NASA

Dryden Flight Research Center Photo Collection.

Flew 72 miles, from Crete to Santorin, in just under 4 hours

Sandwich panels: propeller, wing and tail trailing edge strips,

tail surface struts image: MIT Archives

29


http://www.dfrc.nasa.gov/Gallery/Photo/Daedalus/HTML/EC88-0059-002.html
http://www.dfrc.nasa.gov/Gallery/Photo/Daedalus/HTML/EC88-0059-002.html
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