
Sandwich Panels

• Two stiff strong skins separated by a lightweight core

• Separation of skins by core increases moment of inertia, with little increase in weight

• Efficient for resisting bending and buckling

• Like an I beam: faces = flanges — carry normal stress
core = web — carries shear stress

• Examples: and

• Faces: composites, metals
Cores: honeycombs, foams, balsa

honeycombs: lighter then foam cores for required stiffness, strength
foams: heavier, but can also provide thermal insulation

• Mechanical behavior depends on face and core properties and/or geometry

• Typically, panel must have some required stiffness and/or strength

• Often, want to minimize weight — optimization problem
e.g. refrigerated vehicles; sporting equipment (sail boats, skis)
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Figure  removed  due  to co pyright re strictions.  See Figure 9.4:

Gibson,  L.  J.  and M.  F. Ashby.  Cellular Solids: Structure and 
Properties.  Cambridge  University  Press,  1997.

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge

University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.
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Sandwich beam stiffness

• Analyze beams here (simpler than plates; same ideas apply)

V

B.M.

Face: ρf , Ef , σyf

Core: ρ∗c, Ec
∗, σc

∗

(Solid: ρs, Es, σys )

Typically Ec
∗ � Ef

δ = δb + δs :

P l3
δb =

bending deflection δb and shear deflection (of core) δs
since Gc
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B1=constant, depending on loading configuration
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Sandwich structures: typically Ef � Ec
∗ and c� t

E
Approximate (EI)eq ≈ f btc

2

2

δs =? core

τ = Gγ

P

A
∝ G

δs
l

P l
δs =

B2 (AG)eq
b(c+ t)2

(AG)eq = Gc
c

≈ bc Gc

δ = δb + δs

2Pl3 Pl
δ = +

B1Ef b t c2 B2 b c G∗c

And also note:

G∗c = C2 Es(ρ
∗/ρs)

2 (foam model)

C2 ≈ 3/8
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Minimum weight for a given stiffness

• Given face and core materials

◦ beam length, width, loading geometry (e.g. 3 pt bend, B1, B2)

• Find: face and core thicknesses, t + c, and core density ρ∗c to minimize weight
W = 2 ρf g b t l + ρ∗c b c l

• Solve P/δ equation for ρ∗c and substitute into weight equation

• Solve ∂W/∂c = 0 and ∂W/∂t = 0 to get topt, copt

• Substitute topt, copt into stiffness equation (P/δ) to get ρ∗c opt

• Note that optimization possible by foam modeling Gc = C2 (ρ∗/ρs)
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Comparison with experiments

• All faces with rigid PU foam core

• Gc = 0.7 Es (ρ∗c/ρs)
2

• Beams designed to have same stiffness, P/δ, span l, width, b

• One set had ρ∗c = ρ∗c opt, varied t, c

• One set had t = topt, varied ρ∗c, c

• One set had c = copt, varied t, ρ∗c

• Confirms minimum weight design; similar results with circular sandwich plates

Strength of sandwich beams

• Stresses in sandwich beams
Normal stresses

My c 2 M
σf = Ef = M Ef =

(EI) 2 E b t c2eq f b t c
My c 2 M E∗

σc = Ec
∗ = M E∗

)eq 2 Ef b t c2
c = c

(EI b t c Ef

Since Ec
∗ � Ef σc � σf ⇒ faces carry almost all normal stress
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Minimum Weight Design 

Al faces; Rigid PU foam core 
Figures 7, 8, 9: Gibson, L. J. "Optimization of Stiffness in Sandwich Beams with Rigid Foam Cores."
Material Science and Engineering 67 (1984): 125-35. Courtesy of Elsevier. Used with permission.
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• For beam loaded by a concentrated load, P (e.g. 3 pt bend)

P l
Mmax = e.g. 3 pt bend B3 = 4; cantilever B3 = 1

B3

σf =
P l

B3 btc

• Shear stresses vary parabolically through the cross-section, but if

Ef � Ec
∗ and c� t τc = V

b c V = shear force at section of interest

τc =
P

B4 bc
Vmax =

P
e.g. 3 pt bend B4 = 2

B4

Failure modes

face: can yield
compressible face can buckle locally – “wrinkling”

core: can fail in shear
also: can have debonding and indentation

we will assume perfect bond and load distributed sufficiently to avoid indentation
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Stresses 

Face: Normal stress 
Core: Shear stress  

Approximate stress 
distributions, for: 
Ec<<Ef and t<<c 

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge

University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.
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Failure Modes 

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge

University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.
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(a) Face yielding
P l

σf = = σy f
Bs b t c

(b) Face wrinkling: when normal stress in the face = local buckling stress

1/3
σbuckling = 0.57 Ef E∗ 2/3c buckling on an elastic foundation

E 2
c
∗ = (ρ∗c/ρs) Es

1/3
σbuckling = 0.57 E 2/3 4/3

f Es (ρ∗c/ρs)

P l
wrinkling occurs when σf =

1/3
= 0.57 E E2/3 (ρ∗/ρ )4/3s

B s
s b t c

f c

(c) Core shear failure

τc = τc
∗

P
= C11 (ρ∗

B4 b c
c/ρs)

3/2 σys C11 ≈ 0.15
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• Dominant failure load is the one that occurs at the lowest load

• How does the failure mode depend on the beam design?

• Look at transition from one failure mode to another

• At the transition — two failure modes occur at same load

face yielding: Pfy = B3 b c(t/l) σy f

1/3
face wrinkling: P = 0.57B b c (t/l) E E2/3

w 3 f s (ρ∗ 4
f c/ρs)

/3

core shear: Pcs = C11 B4 b c σ
3/2

ys (ρ∗c/ρs)

• Face yielding and face wrinkling occur at some load if

1/3
B b c (t/l) σ = 0.57B b c (t/l) E E2/3

3 ( 3
yf 3 f s ρ∗c/ρs)

4/

 f
or (ρ∗c/ρ ) =

(
σy

s

3

1/3 2/3
0.57 Ef Es

) /4

i.e. for given face and core materials, at constant (ρ∗c/ρs)
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t• Face yield — core shear
l

=
C11 B4

B3

(ρ∗c
ρs

)3/2 (σys
σyf

)
• Face wrinkling — core shear

t

l
=

C11 B4

0.57B3

( σys

E
1/3
f E

2/3
s

) (ρ∗c
ρ

)1/6
s

• Note: transition equation only involve constants (C11 B3 B4), material properties (Ef , Es, σys) and
t/l, ρ∗c/ρs; do not involve core thickness, c

• Can plot transition equation on plot with axes ρ∗c/ρs and t/l

• Values of axes chosen to represent realistic values of

ρ∗c/ρs — typically 0.02 to 0.3

t/l — typically 1/2000 to 1/200 = 0.0005 to 0.005

• Low values of t/l and ρ∗c/ρs ⇒ face wrinkling

◦ t thin and core stiffness, which acts as elastic foundation, low

• Low values t/l, higher values ρ∗c/ρs ⇒ transition to face yielding

• Higher values of t/l ⇒ transition to core failure
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Failure Mode Map 

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge

University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.
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Failure Map: Expts 

Figures 12  and  13: Triantafillou,  T.  C.,  and   L.  J.  Gibson.  "Failure  Mode  Maps for Foam Core  Sandwich Beams."
Materials Science and  Engineering  95  (1987): 37–53.  Courtesy  of  Elsevier.  Used  with permission.
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• Map shown in figure for three point bending (B2 = 4, B4 = 2)

• Changing loading configuration moves boundaries a little, but overall, picture similar

• Expts on sandwich beams with Al faces and rigid PU foam cores confirm equation

• If know b, c — can add contours of failure loads

Minimum weight design for stiffness and strength: topt, copt

Given: stiffness P/δ Find: face and core thickness, t, c
strength P0 to minimize weight
span l width D
loading configuration (B1 B2 B3 B4)
face material (ρf , σyf , Ef)
core material and density (ρs, Es, σys, ρ

∗
c)
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• Can obtain solution graphically, axes t/l and c/l

• Equation for stiffness constraint and each failure mode plotted

• Dashed lines — contours of weight

• Design-limiting constraints are stiffness and face yielding

• Optimum point — where they intersect

• Could add (ρ∗c/ρs) as variable on third axis and create surfaces for stiffness and failure equation; find
optimum in the same way

• Analytical solution possible but cumbersome

• Also, values of c/l obtained this way may be unreasonably large — then have to introduce an
additional constraint on c/l (e.g. c/l < 0.1)
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Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge

University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.
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Minimum weight design: materials

• What are best materials for face and core? (stiffness constraint)

• Go back to min. wt. design for stiffness

• Can substitute[ (ρ∗c)opt, topt, copt into weight equation to get min. wt.:

1
W = 3.18 b l2

B1 B2
2 C

2
2

ρfρ
4
s

EfE2
s

( P 5

δ

) /
3

b

]1
• Faces: W minimized with materials that minimize ρf/Ef (or maximize Ef/ρf)

• Core: W minimized with materials that minimize ρ4s/E
2 1/2
s (or maximize Es /ρs)

• Note: ◦ faces of sandwich loaded by normal stress, axially
if have solid material loaded axially, want to maximize E/ρ
◦ core loaded in shear and in the foam, cell edges bend

if have solid material, loaded as beam in bending and want to minimize
weight for a given stiffness, maximize E1/2/ρ

• Sandwich panels may have face and core same material: e.g. Al faces Al foam core
integral polymer face and core

◦ then want to maximize E3/5/ρ “structural polymer foams”

Case study: Downhill ski design

• Stiffness of ski gives skier right “feel”

• Too flexible — difficult to control

20



• Too stiff — skier suspended, as on a plank, between bumps

• Skis designed primarily for stiffness

• Originally skis made from a single piece of wood

• Next — laminated wood skis with denser wood (ash, hickory) on top of lighter wood core (pine,
spruce)

• Modern skis − sandwich beams

− faces — fiber composites or Al
controls stiffness− core — honecombs, foams (e.g. rigid PU), balsa

]
• Additional materials

◦ bottom-layer of polyethylene — reduces friction

◦ short strip phenol — screw binding in

◦ neoprene strip ∼ 300 mm long — damping

◦ steel edges — better control
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Ski Case Study 

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge

University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.
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Ski case study

• Properties of face and core material

Al Solid PU Foam PU

ρ(Mg/m3) 2.7 1.2 0.53
E GPa 70 1.94 0.38
G GPa − − 0.14

• Ski geometry

◦ Al faces constant thickness t

◦ PU foam core — c varies along length, thickest at center, where moment highest

◦ ski cambered

◦ mass of ski = 1.3 kg (central 1.7 m, neglecting tip and tail)
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Ski Case Study 

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge

University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.
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Bending stiffness

• Plot c vs. x, distance along ski

• Calculated (EI)eq vs. x

• Calculated moment applied vs. x

• Get M/(EI)eq vs. x

• Can then find bending deflection, δb = 0.28 P

• Shear deflection found from avg. equiv. shear rigidity

P l
δs = = 0.0045 P

(AG)eq

• δ = δb + δs = 0.29 P P/δ = 3.5 N/mm measured P/δ = 3.5 N/mm

• Note current design δs � δb; at optimum δs ∼ 2δb (constant c)

• Can ski be redesigned to give same stiffness, P/δ, at lower weight?

• If use optimization method described earlier (assuming c=constant along length)

copt=70 mm mass=0.31kg ⇒ 75% reduction from current design

topt=0.095 mm

p∗c opt=29 kg/m3 But this design impractical ⇒ c too large, t too small
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Alternative approach:

• Fix c = max value practical under binding and profile c to give constant M/(EI)eq along length of
ski (use cmax = 15 mm)

• Find values of t, ρ∗c to minimize weight for P/ρ=3.5 N/mm

• Moment M varies linearly along the length of the ski

• Want (EI)eq to vary linearly, too; (EI)eq = Ef b t c
2/2

Want c
√

• ∝ x, distance along length of ski

• Half length of ski is 870 mm and cmax =15 mm

c = 15
( x 1/2

= 0.51 x1/2 (mm)
870

• Can now do

)
minimum weight analysis with

P l3 2
δ =

P l
+

B1 Ef b t (cmax + t)2 B2 C2 b cmax(ρ∗c/ρs)
2Es
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• B1 — corresponds to beams with constant M/EI

• B2 — cantilever value (B2 = 1) multiplied by average value of c divided by maximum value
of c B2 = 2/3

∂ω• Solve stiffness equation for ρ∗c, substitute into weight equation and take = 0
∂t

• Solve for topt, then ρ∗c opt

• Find: c 3
max=15 mm ρ∗c opt=1.63 kg/m
topt = 1.03 mm mass = 0.88 kg ⇒ 31% less than current design

Daedalus

• MIT designed and built human powered aircraft (1980s)

• Flew 72 miles in ∼ 4 hours from Crete to Santorini, 1988

• Kanellos Kanellopoulos — Greek bicycle champion pedaled and flew

mass 68.5# = 31 kg propeller: kevlar faces, PS foam core (11′ long)
length 29′ = 8.8 m wiring and trailing edge strips kevlar faces / rohacell foam core
wingspin 112′ = 34 m tail surface struts: carbon composite faces, balsa core
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Daedalus 
Mass = 31 kg 
 
Length = 8.8m  
 
Wingspan = 34m 
 
Propeller blades = 3.4m  

Flew 72 miles, from Crete to Santorin, in just under 4 hours  

Sandwich panels: propeller, wing and tail trailing edge strips, 
tail surface struts 

Image: MIT Archives 

Courtesy  of  NASA.  Image  is in  the  public domain.  NASA

Dryden  Flight Rese arch  Center Photo Collection.
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