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| wanted to talk a little bit about cork partly because cork is kind of interesting. Cork has a
structure that's a little bit like one of those honeycomb things. What I'm going to do is I'm just
going to talk and go through the slides. I'm not going to write the notes on the board. There's
only a few pages of notes, and it's in the Stellar site. I'm not going to write notes for this

because it's just really for fun.

This first slide starts off with historical uses of cork. Cork was used by the Romans. They used
it for the soles of sandals, the same as we do. And they used it for stopping bottles of wine, the

same as we do.

But they didn't realize that you could just use the cork. They would take the cork, put it in the
wine bottle, and then they would use pitch which is a tarry stuff from a tree. They would use

the pitch and seal the bottle with the pitch.

In the 1600s, there were some Benedictine monks that realized that you could just use the
cork and not use the pitch. They were the ones who really perfected the use of corks in wine

bottles for sealing it.

So what is cork? Cork is the bark of a tree called Quercus suber, the cork oak. Here's a piece
of the cork bark. All trees have a layer of cork in them. But the thing that's different about

Quercus suber is that it's very thick and the corks are obtained from this thick layer.

Quercus suber is a Mediterranean type of tree. It grows, Portugal is the main place that

exports cork, but also places like Algeria, Spain. You can grow it in California.

The cork is kind of unusual because-- let me scoot onto the next slide-- it's kind of unusual. So
here's a little picture. | went to Portugal when | was a graduate student doing this project.
Here's the cork tree here. Here's the little mini we rented. Here's the cork being harvested

here. Cork's unusual because you can remove the bark from a cork oak tree and it regrows.

So most trees if you did this, you would Kill the tree. But cork doesn't get killed by doing this.



What happens is they plant trees. You have to wait something like 10 or 15 years for the tree
to get big enough to harvest the cork. And then the first harvest is poor quality and they don't
use that. And then you have to wait another 10 years or so before you can actually harvest the

cork.

So you can imagine if a cork orchard or forest gets chopped down to build a skyscraper, or
apartment buildings, or something, it's not an economically feasible thing to plant cork trees
these days. So when the trees are cut down, they don't tend to get replanted at this point. And
there's a number of artificial substitutes for corks. You've probably seen wine bundles with

foam plastic corks in them too.

OK. The reason it's called Quercus suber is that the cell walls in this particular type of cork oak
are covered with a waxy substance called "suberine." That's where the Quercus suber--
"Quercus" is "oak." Every oak is Quercus something. "Quercus alba" is white oak. Quercus just

means oak.

If we look at the structure of the cork, we can see that it's got these different views of the cork
that are seen here. This is a drawing by Robert Hooke in the 1600s from his book

Micrographia. He was the first person to really draw cork like this.

You can see he drew sort of boxy cells on this side. And then, the other perpendicular plane,
the cells have this structure here, sort of more rounded. And here's a little sketch he's got of

the cork tree.

Over here are SEM pictures. These two planes here correspond to this plane in Hooke's
drawing. This plane here corresponds to this plane here. This over here is Hooke's actual

microscope. | think the Royal Society still has that microscope that Hooke used in the 1600s.

Some of you know that Hooke wrote this book called Micrographia. He got one of the first
microscopes. He looked at a lot of different materials, and he drew these beautiful drawings.

He wrote a page or two about each of the drawings.

Harvard has a first edition of Micrographia, and | made a little video on it. So | thought I'd show
you the video because the drawings are beautiful. But the url's on the slides, and so you can

watch it yourself.

There's more on this and on how he came to be so good at making scientific apparatus, how

he came to do the Micrographia book. At the end of it, there's a comparison of a number of his



drawings with modern SEM images of the same thing.

He had this very famous picture where he draws a flea. Don Galler, the person who runs the
SEM for me, | had him put a flea in. And he has essentially the same kind of image. The thing
that's spectacular is you can see how much of the detail that Hooke was able to capture in his

drawings. There's some really beautiful drawings.

OK. So let's go back to cork. Hooke was the first person to use the word "cell" to describe
biological cells, and he described the cell in cork. That's the structure looking at the SEM
micrographs and his optical micrographs. These are just some more higher resolution, higher

maghnification, images.

One of the things that you can see is that the cork has these little corrugations on the cell
walls. See those little wrinkles? All the cell walls have those little wrinkles. This plane here is
the perpendicular plane. If you look down into the cells, you can see those blurry things. Those

are the corrugations in the cell walls. That's the structure.

Here's a schematic. Here's the cork tree. The cork is the layer just beneath the bark. This is a
picture of how the cells are oriented relative to their radial, and tangential, and axial directions.

You can think of them as roughly hexagonal. They've got these little corrugations.

This is a schematic of an individual cell. We measured the dimensions of the cells, and these
are some average dimensions here. Typically, the cells are tens of microns long, and the cell
wall is about a micron thick. Something like that. OK? One of the things we're going to see is

that corrugated structure gives rise to some of the interesting properties of cork.

If we load cork and just do mechanical tests on it-- this is just a uniaxial stress-strain curve.
You can see the stress-strain curve looks like all these other curves we've seen for
honeycombs. There's a linear elastic part here. There's a stress plateau here. And then

there's a densification part here.

Typically, the relative density of cork is around 0.15. Something like that. It densifies at a strain

of something less than 0.85. It's a stress-strain curve.

And when we did our little project on cork, we measured the properties in the three directions
because in one direction, it's roughly hexagonal cells. That plane is isotropic. The e1,e2 plane

is isotropic.



This compares the measured values of the properties versus what we calculated from the
honeycomb model. And really, we just used the sorts of equations that we talked about in
class over the last couple of lectures, apart from loading in the x3 direction because in the x3

direction, you've got those corrugated walls.

And you have to take those corrugations into account. So there's another complication that I'm

not going to go into. But there's a sort of modification you can do to account for that.

But you can see there's actually pretty good agreement here between the elastic moduli that
we measured and what we calculated. The compressive strengths down here are not quite so
good. They're off by a factor of two, more or less. But they're in the right ballpark for the cork.

So those are some of the structures, some of the properties.

One of the interesting things about cork is what it's used for. The uses of cork really exploit the
mechanical properties. Obviously, it's used for stoppers for bottles. | brought a champagne
cork along with me, and | brought a couple of other little pieces of cork here. I'll pass those

around in a minute.

One of the things to look at is just the still wine cork, which is the one on the right, and the
champagne cork, which is the one on the left. If you notice the still wine cork is just made of
one piece of cork that's cored out from the bark. And if you notice these little channels. These
little channels here are called "lenticels.” On the still wine cork, they go this way. And on the

champagne cork, they go that way. They're oriented perpendicular.

It turns out that they are normal to the isotropic plane in the cork. If you look at the champagne
cork, this plane here is the isotropic plane. If you think of that being put into a bottle, | think
part of the reason they orient it this way is because it gives you a uniform compression against

the neck of the bottle and gives a nice seal. So that's one of the things about corks.

Another thing that's interesting is that cork has a Poisson's ratio equal to zero if you load it in
that direction. Let's see. Did | not bring that picture? Maybe | didn't bring that picture. Hang on

a sec. Nope. | guess | didn't. Sorry.

I thought | brought a picture where | had the deformation of the cells when you load it in that
direction. When you load it-- so say the cells are corrugated this way on. When you load it that
way on, it's like having a bellows and folding up a bellows, or unfolding a bellows. So when you

load it that way on, there's no expansion or contraction this way on. And so you get zero



Poisson's ratio.

And if you think of trying to get the cork into the bottle, it's rather convenient to have zero
Poisson's ratio because you don't get as much expansion. As you're pushing it into the bottle,

you don't get as much expansion that way out, pressing against it.

In fact, if you compare wine corks with rubber stoppers, this is a kind of typical rubber stopper.
Wine corks are always just cylinders. In fact, even the champagne corks are cylinders when

they start off. When they put it into the bottle, it's just a straight cylinder.

It gets deformed like that from being in the bottle for some time. They have straight sides and
you can just squeeze them. There's these funnel things that wine makers have for putting the

cork in the bottle.

You can just squeeze them into the bottle top. You can do that because the Poisson's ratio is

zero and because the Young's modulus and the bulk modulus are both small.

But if you look at a rubber stopper, rubber stoppers always have these tapered sides to them.
And that's because the Poisson's ratio of the rubber is 0.5. As you squeeze it in, it's trying to
move out this way. You couldn't get the stopper in unless it had those tapered sides. So that's

sort of an interesting thing about cork.

Let's see. Another application of cork is it's used for gaskets for the same sorts of reasons. It's

relatively compliant. It takes up any slack between two pieces that you want to press together.

It's often used for musical instruments that come in pieces. Things like clarinets, there'll be a
piece of cork-- you a clarinet player? Yeah? Yeah. One of the interesting things about the
clarinet is that, if you can see here at the ends, there's a piece of cork there. And | think

there's a piece of cork down there. And the other pieces mate up with that.

The cork provides a seal. And the way the cork is cut, it's cut in such a way that those lenticels
go radially out like this, which means that the plane of isotropy and the direction that's got the

zero Poisson's ratio is that radial direction.

When you're squeezing, say, the second part onto it, the cork does not expand
circumferentially. So as you're squeezing it this way, it doesn't expand that way. It doesn't
wrinkle or anything on your other part. They use the cork in a particular orientation for that

reason, | think. So it's used for gaskets



It's also used because it's got a good friction property. It's got a property that is taken
advantage of in things like flooring and shoes. Cork has a high friction even if it gets wet.
Some sources of friction are from adhesion, from a surface effect. Then if, say, the floor gets

wet, then you break that, and it could be slippery.

But the source of friction in cork is from an energy loss and dissipation as you're deforming it.
Imagine you have a wheel here. The wheel is rotating on this cork floor. And here, a piece of

cork is getting deformed as the wheel rolls over it.

As it gets deformed, there's some histeresis loop. Cork has quite a lot of damping in it. There's

quite a lot of energy lost in that histeresis loop.

What that means is that's characteristic of the cork itself. It's not a surface effect. That means
that if you use it for floors or for shoes, it doesn't lose that friction and damping when it gets

wet.

Here's some measurements we did of the coefficient of friction for cork versus doing it dry and

doing it with a liquid, soapy surface. You can see the soap doesn't make any difference.

Cork is seen as a very attractive material for things like flooring. It's actually not a cheap
material to make your floors out of, but it's an attractive material for flooring. Part of the reason

it's used for floors and for the soles of shoes is because of these friction properties.

Another feature of cork is that it's got very small cells compared to a lot of engineering
polymers. The cells are on the order of tens of microns, whereas many polymer foams, the

cells are hundreds of microns or millimeters.

We'll get into this later, but this plot here is really saying that the thermal conductivity of a
cellular material depends, in part, on the cell size. The cell size for foam plastics is in here.

And that for cork is down here.

Because it has a smaller cell size, it has a lower thermal conductivity. Cork was at one point
used to some extent for thermal insulation. If you go to Portugal, where cork comes from,
there's hermit caves. There were these old hermit, religious people who had holed up in a
cave. And they would line the caves with cork to try to make it a little more insulated, a little

more warm.



The other place you see this is if you look at cigarettes, you know cigarettes have that little
brown tip on the part that touches your lips? That's meant to look like cork. And if you look, it
has little dots on it. The little dots are the little lenticels. Apparently, they used cork originally in
cigarettes as a sort of thermal insulation between the cigarette and your mouth. So it was used

for that too.

And then, one final thing. Cork's also used, obviously, for bulletin boards. If you push a pin into
cork, then you get this local deformation here. Here's our pin. And here's cells locally
deformed. When you pull the pin out, you'll recover some of that deformation because the

deformation is elastic. So the hole will partly close.

So that's my little spiel on cork. And that's just because it's interesting. There's no test on cork
or anything like that. OK. So are we good with cork? Any questions? We're OK? OK. Let me

scoot out of there. Then the next part of the course, | wanted to talk about foams.

Let me just park the cork thing. Let me pass these corks around. So you can play with those
too. Oops. There's little bits of cork. There you go. There's the champagne cork, the rubber

cork, some little cork layers.

OK. So the next part of the course, | wanted to talk about foams. And | want to talk about how
we model the mechanical behavior of foams. If we look at the stress-strain curve for foams,
these are some examples for foams made out of different materials with different

characteristics.

The polyurethane and the polyethylene here are examples of elastomeric foams, really. This
one here is an open-celled foam. This one's a closed-cell foam. Polymethacrylamide is a

polymer that has a yield point. Mullite is a ceramic.

You can see the shapes of these curves resemble the shapes that we saw for the
honeycombs. Right? They look exactly the same, in fact. And the mechanisms of deformation

in the foams are very similar to the honeycombs.

Even though the foams have a much more complicated geometry, we can use some of the
ideas from the honeycombs to understand how the foams behave. So that was part of the

reason for doing the honeycomb analysis.

Let me back up. These curves here were all in compression. These curves here were all in

tension. So again, these ones in tension also look like the curves for the honeycombs.



Remember, in tension, we don't get any elastic buckling. So if the foam was made of an

elastomer, we don't see any stress plateau.

If the foam is made of material with a yield stress, then we get a very short yield plateau
because of a slight geometrical difference between pulling and compressing the foam. And if
it's a brittle material, then we just get fracturing. There's going to be some fracture toughness

that's going to characterize it.

We can look at the deformation and the failure in these foams and look at the mechanisms.
And what we're going to do is model the mechanisms and not worry too much about the cell

geometry. So we're going to use dimensional arguments here.

Here's a foam in compression. It was compressed from the top to the bottom. And you can
see this strut that's circled in red. This is unloaded. And then, this is after some load. You can

see this has bent somewhat.

And then, you can see this vertical strut here. As the load gets larger, you can see that strut's
buckled. In an elastomeric foam, you get bending and buckling just the same as we did in the

honeycomb.

Then here's a metal foam. You form plastic hinges in the metal foam. So here's a cell wall
here. And it's a little bent to start with at zero load. But you can see it becomes more bent in
this image over here. And here's a cell wall that's more or less vertical. And you can see that

wall buckles. It's a plastic buckling in this case. There's a permanent deformation there.

Here's a brittle foam. And you can see cell walls in this foam fracture. So this region here is
equivalent to this region here. That little glitch there is the same as that little glitch there. You
can see there's a couple of cell walls here that are fractured. So we get fracture. The idea is is

that the mechanisms of deformation in the foams parallel those in the honeycombs. OK?

All right. So let me write some of this stuff on the board. We're going to start off by talking
about open-celled foams, so foams where there's just solid in the edges, but not in the faces
of the polyhedral cells. Then we'll talk about close-cell foams where there's solid in the faces,

as well. But the open-celled ones are easier. So we'll start with that.

In compression, we see the same three regimes as we did before for the honeycombs.

There's a linear elastic regime that corresponds to bending of the cell walls. There's a stress



plateau.

And for elastomeric foams, that corresponds to buckling. For metal foams, that corresponds to
the formation of plastic hinges. And then, for ceramic or brittle foams, that corresponds to

brittle crushing, so fracturing of the cell walls.

Then, if you load the foam up to higher strains and higher stresses, eventually you get to
densification. And in tension, just like the honeycombs, for the elastomeric materials there is

no buckling. We can get a stress plateau from plastic hinges if there's, say, a metal foam.

And for a brittle foam, we would get a fracture toughness and brittle fracture in tension. So the
idea is the mechanisms of deformation and failure just parallel what we've seen in the

honeycombs.

So we'll start off with the linear elastic behavior. And we'll start with open-cell foams. The initial
linear elasticity is due to bending of the cell walls. And if the thickness of the cell edges relative
to the length is small, the bending dominates the deformation. But as the thickness to length

ratio increases, then axial deformations can become important too.

What we're going to do is we're going to consider dimensional arguments. We're going to set
the dimensional arguments up so that we replicate the mechanisms of deformation and failure.

But we don't worry too much about the cell geometry.

What I'm going to start with is considering a cubic cell. And I've arranged the cubic cell so that
the cell edges are staggered. That's going to give me the bending. The edge length is going to

be L. I'm going to say we have a square cross-section, t squared.

Here's our idealized model here with a cubic cell. All the members have a length, I. All of them
have a square cross-section, t squared. That's an open-cell model. We've got just solid on the

edges and nothing on the faces.

The idea is that if | bend that, or if | load that in compression, so | apply, say, a stress out here
that puts forces on those members there, because I've staggered these cell walls with these
ones here, we're going to get bending in this cell edge here. That bending is going to be what

we model.

I'm going to set this up so that one thing is proportional to something else. These relationships

are going to be true regardless of the cell geometry. So | could have picked a



tetrakaidecahedra if | wanted to, and | would have had these same relationships. I'm just

picking a cubic thing because it's easier to think about.

So first of all, we look at the relative density. Remember, the relative density is the volume
fraction of solid. So it's the volume of the solid over the total volume. And that's going to go as

t squared | over | cubed, or just t over | all squared.

You remember for the honeycomb, the relative density went linearly with t over I. For the
open-celled foam, it goes as t over | squared. The moment of inertia in this case is going to go

as t to the fourth.

Remember, we have a square section, t squared. So if it's bh cubed over 12, bis t, his t. It's

going as t to the fourth.

Then what I'm going to say is the stress is going to go as F over an area length squared. OK?
So if I look at my little square thing here, | look at having my force here. Here we have a force
f. And it's acting over an area that's somehow related to | squared. Right? | don't know exactly

what that constant is, and I'm going to not try to calculate that. But it goes as F over | squared.

Similarly, | can write that the strain is going to go as delta over I. So the strain is going to go as
this bending deflection here, that delta divided by the height of the cell. And that's also I. Then
I also know from structural mechanics that delta is going to go as Fl cubed over E of the solid

and I.

Then I'm just going to put all these things together to get the modulus. The modulus of the
foam is going to go as the stress over the strain. If | plug in what | have for the stress, it's F

over | squared. If | plug in what | have for the strain, it's delta over I.

So this is F over | and delta. I'm going to replace delta by Fl cubed over Es. I'm going to use,
instead of I, I'm going to use t to the fourth. Then the F's are going to cancel out. I've got that
the modulus goes as the modulus of the solid times t over | to the fourth power. Then | can put

that in terms of the relative density. It's going to go as the relative density squared.

So | can summarize all of this by saying that the Young's modulus of the foam is some
constant C1, I'm going to call it, times the modulus of the solid times the relative density

squared.

OK. So this has the same kind of form as those equations we had for the honeycombs. Right?



There's a solid-cell wall property. The solid module's here. For the honeycombs, | put it in

terms of t over |. But the t over | was related to the relative density.

How much solid you've got is reflected in the relative density. And then, this constant C1 wraps
up all the geometrical constants that I've said, one thing's proportional to another, and

something else is proportional to another. C1 just wraps up all of those. OK?

I'm just going to say here C1 includes all the geometrical constants. We have to get C1 by
looking at data. If we look at data for the Young's modulus, we find that C1 is just about equal

to one.

People have also done more sophisticated analyses than this. There's a group of people who
looked at doing a full-scale, structural analysis of an open-celled tetrakaidecahedral cell.

Remember, | said they pack to fill space.

So you can look at a unit cell. They also made their cells such that the thickness along the
length of the cell was not constant. The thickness varied as something called a "plateau

border."

If you have a foam that's made by surface tension, the edges will tend to have these plateau
borders. And the thickness will vary along the length of the edge. So when they did all this
whole, complicated thing, they could calculate a value for C1. They calculated 0.98. So it's

very close to 1.

I'll say analysis of open-cell tetrakaidecahedron cells with these plateau borders give C1 equal

to 0.98. OK. So that's the Young's modulus.

We can also look at the shear modulus. The shear modulus is also going to be controlled by
bending of the cell walls. And so the shear modulus is just going to be some other constant
times Es times the relative density squared, so a similar kind of relationship. It's just a different

constant.

And if the foam's isotropic, and if the Poisson's ratio is a third, then C2 is equal to 3/8.
Remember, if we have isotropy, then the shear modulus is equal to E over 2 1 plus nu. And so

you can get the C2 from that if you say nu is a third.

Then we can also get Poisson's ratio for the foam. If the foam is isotropic, so we'll say for an

isotropic foam here, nu is equal to E over 2G minus 1. That's just rearranging this expression
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here.

And because E and G both depend on the relative density squared, they both depend on Es
squared, that's all going to cancel out. So this is going to be equal to C1 over 2 C2 minus 1. So

that's going to equal to a constant.

That constant's going to be independent of whatever material the foam is made from and the

relative density. The constant just depends on the cell geometry.

Remember, in honeycombs we found the same thing. The Poisson's ratio for the honeycombs
only depended on the cell geometry. It didn't depend on the solid properties. It didn't depend

on the relative density. So this is an exactly parallel thing here for the foams.

Yeah?

I have a silly kind of question. What is the difference between foam and the honeycombs?

Oh. The honeycombs have cells in a plane, and they're prismatic in the third direction. And the
foams have polyhedral cells. You know what a tetrakaidecahedron, a 3D, polyhedral cell. OK?

The honeycombs are prismatic. And the foams have polyhedral cells. OK? Are we good? OK.

So there's a couple more interesting things about Poisson's ratio. The same way we can make
honeycombs with negative Poisson's ratios, we can also make foams with negative Poisson's

ratios.

They do it the same way as for the honeycombs, really. The honeycombs had negative
Poisson's ratios if the cell walls looked like this, this sort of arrangement. So that sort of a
thing. We said that theta was negative for the honeycombs. And if you invert the cell walls on a

foam, you also get negative Poisson's ratios.

And the way they do that is they take a thermoplastic foam, and then, they load it
hydrostatically. So they compress it in all three directions. And they smush the cells in on each

other.

And then, they heat it up to a temperature above the glass transition temperature while it's still
smushed. And then, they cool it down. So they end up with that structure frozen in. And if they

do that, they get a negative Poisson's ratio.

I'll just say they invert the cell angles analogous to the honeycomb. They load the foam



hydrostatically and heat to a temperature above Tg. And then, they cool and release it.

| have a photograph here of a foam with a negative Poisson's ratio. You can see how the cells
have been smushed in. It's the equivalent of the way it's done for the honeycomb. OK? Are we

good? OK.

That's the linear elastic moduli for open-celled foams. The next thing | wanted to do was
closed-cell foams. If we look at a closed-cell foam, we can idealize it in this kind of a way here.

I've set it up so that the edge thickness is different from the face thickness.

That's really representing the fact that in foams, many foams are made using a liquid, and the
foaming is controlled by surface tension. Often, the surface tension draws material into the

edges and away from the faces. So the faces tend to be thinner than the edges.

When we have deformation of the closed-cell foam, we've got bending of the edges the same
as we did for the open-celled foam. But the faces can stretch. So they can have an axial
stretching. You can think of that as a cell membrane stretching here. So imagine if | either pull

on the foam or | compress it, there's going to be some axial load in the faces.

So when we analyze them, we have to account for both bending of the edges and axial
deformation in the faces. I'll just say we have edge bending as in open-cell foams. And we also

get a face stretching.

Another thing that can happen in the closed-cell foams is we can get compression of the gas.
In an open-cell foam, the gas can move from one cell to the next. But in a closed-cell foam,
the gas is trapped. And as the volume of the cell changes, the gas gets compressed. So we

have another effect here.

So we'll say for polymer foams, surface tension tends to draw material to the edges during

processing.

We define two thicknesses, one for the edge and one for the face. And then we apply a force
to this cubic structure. And we can do an analysis a little bit like what we did for the open-cell

foam. Let me rub all this off.

OK. I'm going to set this up a little bit differently than for the open-celled foam. We're going to
do a work argument. We're going to look at the external work done by the force F going

through a deformation, delta. And that's going to have to equal the internal work done by the



edges bending and by the faces stretching.

So let me set that up. We're going to say the external work done, that's going to be
proportional to F times delta. So delta is how much the whole thing is going to deform. Then,

I've got internal work from bending of the edges.

That internal work is going to be proportional to F over delta times delta squared. I'm going to
end up with an expression where everything's in delta squared. So | want to keep the delta
squared there for now. And F over delta is the stiffness. That's going to go as E of the solid

times | over | cubed. | is going to go is Te to the fourth here because it's | of the edges.

I've also got internal work from stretching of the faces. That internal work is going to be-- I'm
going to run into my other equations here. Let me put it down a little. That's going to go as the

stress on the face times the strain in the face times the volume of the face.

Or | could write that, instead of stress of the face, | can put it in terms of Hooke's law and say
it's E of the solid times the strain in the face squared times the volume of the face. And | can
replace the strain in the face by delta over I. So it's delta over | squared. And then, the volume

of the face is going to be t of the face times | squared.

Then | want to balance the internal work and the external work. | can say F times delta is
going to equal some constant I'm going to call "alpha" times E of the solid times t of the edge
to the fourth, that's this guy up here, over | cubed times delta squared plus some other

constant I'm going to call "beta" times E of the solid times delta over | squared tf | squared.

So far, I've got this in terms of the force I'm applying. But | want to get a modulus of the foam
out of this. | want to relate this force here to the modulus of the foam. | can say the modulus of
the foam is going to be related to F over | squared, that's the stress, divided by the strain,

delta over |.

| can write the force is proportional to the modulus times the deflection, delta, and times the
member length, I. And then, I'm going to plug that guy into this expression up here. And I'm
going to get a delta squared on the left. And I'm going to get delta squareds in each of the

right-hand terms. And so I'm going to cancel out the deltas.

If I put all that together, | have the modulus in the foam times delta squared times I. There's a
delta here, and there's a delta there. That gives me delta squared. And that's going to equal

alpha Es Te to the fourth over | cubed times delta squared plus beta times Es times delta



squared tf, if | cancel out one of those | squareds.

So here | can get rid of the delta squareds in all these terms. And if | just divide by I, I'm going
to have the modulus of the foam. | get a term here that it goes as alpha E of the solid times t
of the edge over | to the fourth power plus beta times E of the solid times tf over I. Are we

good?

OK. And what I'd like to do is instead of putting it in terms of te and tf, I'd like to put it in terms
of the relative density. I'm going to look at two limits. I'm going to say if we just had open cells,
if there were no faces on the membranes, if we just had open cells, and we had a uniform t,

then the relative density would go as t over | squared.

If | just had closed cells, and | had a uniform t, then the relative density just goes linearly with t
over I. The relative density is the volume fraction of solids. It's the volume of the solid over the
total volume. For a closed-cell foam with a uniform t, the volume of the solid is going to be t

times | squared. And then, the volume total is | cubed. So it's t over I.

Now, I'm going to define one more thing. If | say that phi is equal to the volume fraction of the
solid in the edges, then | can say te over | is some constant times phi to the 1/2 times the
relative density to the 1/2. And | can say tf over | is equal to some other constant, c prime, I'll

call it, times 1 minus phi, that's how much is in the faces, times the relative density.

Then | could combine all of this. Can | put it in here? Maybe I'll just stick it down here. Hang
on. OK. Put it up here. This is my final expression here. And this term here arises from the
edge bending. This term here arises from the face stretching. So | think | should wait a bit for

you to catch up.

The idea is the edges are bending. The faces are stretching. We're looking at the work done
by deforming the edges and the faces and equating that to the work done by the externally

applied load, f. OK?

That gives us two terms, one that accounts for the edge bending, and one that accounts for
the face stretching. To be comprehensive, we want to take into account the compression of

the gas, as well. So there's one more term I'm going to add on to that.

Typically the gas effect is only significant for elastomeric foams. If you had a metal foam or a

ceramic foam that was closed-cell, it wouldn't really contribute much. But just to be complete,



we'll go through this.

The idea here is we say we've got a cubic element of the foam. Initially, it has a volume, vO. If
we apply a stress, a uniaxial stress, there's some change in the volume of the foam. So there's

some volume, v, after we compress it by some strain, epsilon.

If we can figure out what the volume is relative to the initial volume, we can figure out how the
change of the amount of gas goes from the initial state to the compressed state. Then we can

use Boyle's law.

The idea is P1V1 equals to P2V2. Then we can figure out, using Boyle's law, what the

pressure must be. And then, that pressure is what's contributing to the modulus.

When | do this, I'm going to write down some equations that just have the main results.
There's a whole bunch of algebra just to get from one to the other. And I'm not going to write
them all down. When | write the equations, don't panic if it's not obvious how you get from one
to the other. In the notes that I'm going to put online, there's all the details of how you get from

one to the other.

The idea is that we start with a cubic element of foam. Initially, before it's loaded, it has a
volume V0. Then we apply a uniaxial stress. And we say the axial strain in the direction of the

stress, I'm going to call epsilon.

Just from the geometry, you can calculate the deformed volume. So after you load it, the
volume is V. And that volume on loading, V, divided by the initial volume, VO, you can show.
It's fairly straightforward. It's 1 minus epsilon times 1 minus 2 times the Poisson's ratio of the

foam.

Here, I'm taking compressive strain as positive. And if you do this whole volume thing, you'll
get terms in epsilon squared and epsilon cubed. But because if it's linear elastic, epsilon is

going to be small. I'm going to ignore the epsilon squared and the epsilon cubed terms.

That's the total volume of the foam after and before the compression. And then, what | want is
the volume of the gas. And the volume of the gas is just going to be the volume minus the

volume of the solid.

And | can get that by just subtracting off the relative density. So Vg over Vg0. Again, Vg0 is the

volume of the gas initially. Vg is the volume of the gas when I'm compressing it. Remember,



the relative density is the volume fraction of solids. So I'm essentially subtracting out the

amount of solid to get the amount of gas.

Then we can use Boyle's law. Here, p is going to be the pressure after the strain and p0 is

going to be the initial pressure.

The building seems rather making unhappy noises for some reason. I'm not sure what that's

all about.

There'll be some initial pressure in the gas even before the strain, or before the stress is
applied. That's p0. So the pressure we need to overcome is p minus p0. Again, I'm missing out
a bunch of steps. But using that expression and this expression and this expression, you could
find that p prime is equal to p0 times epsilon times 1 minus 2 nu divided by 1 minus epsilon 1

minus 2 nu minus the relative density.

Then the contribution of the gas to the modulus you can get by just taking the derivative of that
pressure with respect to the strain. So remember, modulus is stress over strain. It's the same

kind of idea.

So I'm going to call it E star g for the contribution from the gas. So that's going to dp prime d
epsilon. And that's going to equal p0 times 1 minus 2 nu over 1 minus the relative density.

OK? As | said, I'll scan the pages that have the details and put it online.

The final expression we get combines all of these things. The modulus of the foam relative to
the solid is phi squared rho over rho s squared plus 1 minus phi, that's the amount of material

in the faces, times the relative density and then plus this gas compression term.

Like | said, for most foams, the gas compression is negligible. So if p0 is equal to the
atmospheric pressure, so about 0.1 megapascal, then the gas term's negligible, except for

elastomeric foams. So that's the Young's modulus.

Then we can do a similar thing for the shear modulus. And the thing to notice in shear is that
when you shear something, there's no volume change. So if you shear it and there's no
volume change, there's no gas compression. There's no pressure built up because there's no

change in the volume. So for the shear modulus, you just have the first two terms.

And if the foam is isotropic and you use a third, then this constant here is going to be 3/8. And



then, Poisson's ratio is just going to be a function of the cell geometry, again. And roughly, we

could say it's going to be around a third.

OK. Are we good? Let me walit a little bit.

So the idea is we're looking at the deformation of the bending in the cell edges, and the
stretching in the cell faces, and the gas compression. And we're accounting for those different

terms.

The next thing is to compare these model equations with some data. And here's data for
Young's modulus. Here, we're plotting the relative Young's modulus, so the modulus of the

foam divided by the solid against the relative density. Again, these are log-log scales.

On this plot, everything with open symbols is an open-cell foam, and everything with filled
symbols is a closed-cell foam. Here's our equation for the open-celled foams, the simplest

thing that goes with density squared.

And that's that thick line there. And you can see these are all open-cell foams. There's some

more up here. So that gives a reasonable description of that data.

And then, these are two lines for closed-cell foams for different values of phi, so different
values of the amount of solid in the edges. And you can see all the filled symbols are the

closed-cell foams. And they're in between this line here and this line here, basically.

So that gives a fairly good description for the modulus of the foams considering how crude this
model is. We're not trying to account for the cell geometry. We're just modeling the

mechanisms of deformation and failure.

And then, here's a similar plot for the shear modulus. Here's for open-cells, 3/8 times the
relative density squared. These are open-celled foams down here. These are closed-cell
foams up here. If the amount of material in the faces is small, then you would just get the

shear modulus varying with the relative density squared.

Then here's data for Poisson's ratio. We don't really know what the constant is because we
don't know what all these geometrical parameters are. But here's a value of a third. And you

can see there's a lot of scatter here. This is like less than 0.2. This is more than 0.5.

And the scatter really represents differences in the cell geometry. If the foams were, say,



anisotropic, and the cells were stretched in one direction, then you would get different values

of the Poisson's ratios. So that's the Poisson's ratios there.

I'm thinking I'm going to stop there because that seems like enough equations for today. And
then, next time we'll start doing the stress plateau and we'll figure out the elastic collapse

stress from buckling and a plastic collapse stress from yielding, and so on, and so on.

We'll finish doing the modeling next time. And we'll probably start doing a little bit of other stuff

on foams next time.



