Lecture 5, 3.054

Honeycombs: Out of plane behavior

- Honeycombs used as cores in sandwich structures
 - \circ carry shear load in $x_1 x_3$ and $x_2 x_3$ planes
- Honeycombs sometimes used to absorb energy from impact loaded in x_3 direction
- Require out-of-plane properties
- Cell walls extend or contract, rather than bend
- Honeycomb much stiffer and stronger

Linear-elastic deformation

- Honeycomb has 9 independent elastic constants:
 - 4 in-plane
 - 5 out-of-plane

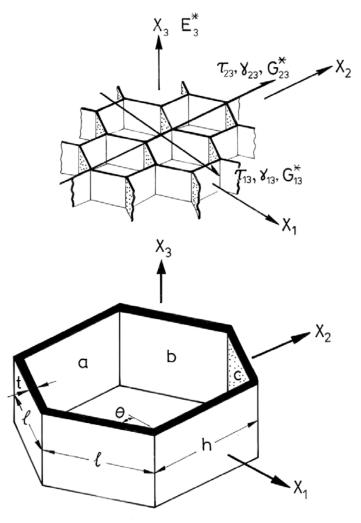
Young's Modulus, E_3^*

- Cell walls contract or extend axially
- ullet E_3^* scales as area fraction of solid in plane perpendicular to x_3

$$E_3^* = E_s(\rho^*/\rho_s) = E_s\left(\frac{t}{l}\right) \frac{h/l + 2}{2(h/l + \sin\theta)\cos\theta}$$

Notice: $E_3^* = \frac{t}{l}$ and E_1^* , $E_2^* = \left(\frac{t}{l}\right)^3$ Large anisotropy

Out-of-Plane Properties



Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Poisson ratios

ullet For loading in x_3 direction, cell walls strain by $\nu_s \; \epsilon_3$ in x_1, x_2 directions

$$\nu_{31}^* = \nu_{32}^* = \nu_s$$
 (recall $\nu_{ij} = -\frac{\epsilon_j}{\epsilon_i}$)

• ν_{13}^* and ν_{23}^* can be found from reciprocal relation:

$$\boxed{\frac{\nu_{13}^*}{E_1^*} = \frac{\nu_{31}^*}{E_3^*} \text{ and } \frac{\nu_{23}^*}{E_2^*} = \frac{\nu_{32}^*}{E_3^*}}$$

$$\therefore \nu_{13}^* = \frac{E_1^*}{E_3^*} \nu_{31}^* = \frac{c_1 \left(\frac{t}{l}\right)^3 E_s \nu_s}{c_2 \left(\frac{t}{l}\right) E_s} \approx 0 \quad \text{for small } \left(\frac{t}{l}\right)$$

Similarly, $\nu_{23}^* \approx 0$

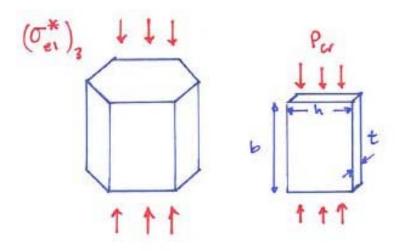
Shear moduli

- Cell walls loaded in shear
- But constraint of neighboring cell walls gives non-uniform strain in cell walls
- Exact solution requires numerical methods
- Can estimate as:

$$G_{13}^* = G_s \left(\frac{t}{l}\right) \frac{\cos \theta}{h/l + \sin \theta} = \frac{1}{3} G_s \frac{t}{l} \quad \text{for regular hexagons } (= G_{23}^*)$$

• Note linear dependence on $\left(\frac{t}{l}\right)$

Compressive strength: elastic buckling



• Plate buckling

$$P_{cr} = \frac{KE_s t^3}{(1 - \nu_3^2)h}$$
 also for 1

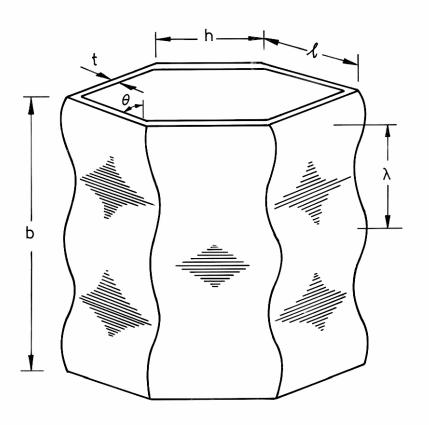
- ullet K end constraint factor depends on stiffness of adjacent walls
- If vertical edges are simply supported (free to rotate) and b > 3l: K=2.0
- If vertical edges are clamped and fixed: K=6.2
- Approximate $K \approx 4$

 $P_{total} = \sum P_{cr}$ for each wall (2l + h for each cell)

$$\sigma_{el}^*)_3 = \frac{E_s}{1 - \nu_s^2} \left(\frac{t}{l}\right)^3 \quad \frac{2(l/h + 2)}{(h/l + \sin\theta) \cos\theta}$$

- Regular hexagons $(\sigma_{el}^*)_3 = 5.2E_s \left(\frac{t}{l}\right)^3$
- \bullet Same form as $(\sigma_{el}^*)_2$ but ${\sim}20$ times larger

Out-of-Plane: Elastic Buckling



Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Compressive strength: plastic collapse

- Failure by uniaxial yield $(\sigma_{pl}^*)_3 = \sigma_{ys} (\rho^*/\rho_s)$
- But, in compression, plastic buckling usually precedes this
- Consider approximate calculation, simplified geometry isolated cell wall
- Rotation of cell wall by π at plastic hinge
- Plastic moment $M_p = \frac{\sigma_{ys}t^2}{4}(2l+h)$ (note 2l+h instead of b as before, for loading in x_1 or x_2)
- Internal plastic work = πM_p
- External work done is $\frac{P\lambda}{2}$; λ is wavelength of plastic buckling $\approx l$; $P = \sigma_3(n + l\sin\theta)(2l\cos\theta)$

$$\therefore \frac{P\lambda}{2} = \pi M_p$$

$$\sigma_3(h+l\sin\theta)(2l\cos\theta)\frac{l}{2} = \pi \frac{\sigma_{ys}t^2}{4}(2l+h)$$

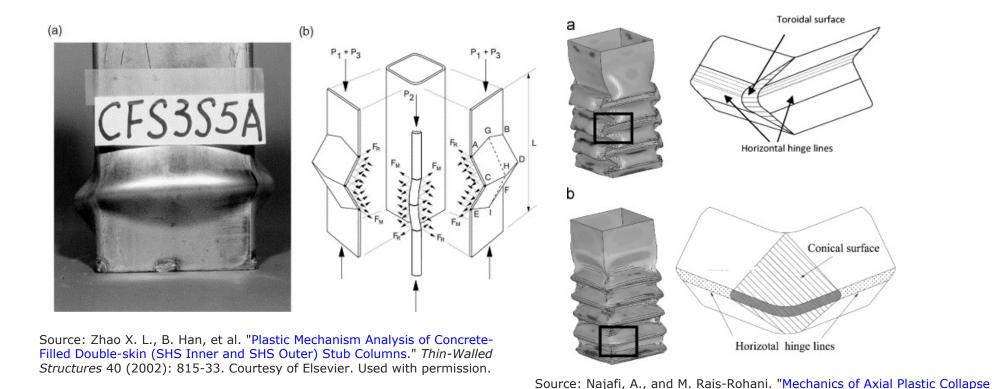
$$(\sigma_{pi}^*)_3 \approx \frac{\pi}{4}\sigma_{ys}\left(\frac{t}{l}\right)^2 \frac{(h/l+2)}{(h/l+\sin\theta)\cos\theta}$$

Note: misprint in book equation before 4.115

Regular hexagons: $(\sigma_{pi}^*)_3 \approx 2\sigma_{ys} \left(\frac{t}{l}\right)^2$

Exact calculation for regular hexagons: $(\sigma_{pi}^*)_3 = 5.6 \, \sigma_{ys} \left(\frac{t}{l}\right)^{5/3}$

Out-of-Plane: Plastic Collapse



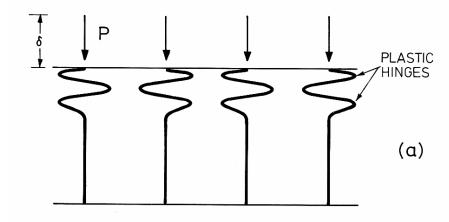
Zhao XL,, Han B and Grzebieta RH (2002) Thi-Walled Structures **40**, 815-533

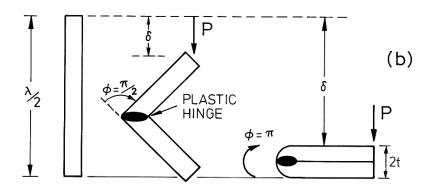
Najafi A and Rais-Rohani M (2011) Thin-Walled Structures 49, 1-12

1-12. Courtesy of Elsevier. Used with permission.

in Multi-cell, Multi-corner Crush Tubes." Thin-Walled Structures 49 (2011):

Out-of-Plane: Plastic Collapse





Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Out-of-plane brittle fracture (tensile failure)

• Defect-free sample, walls see uniaxial tension

$$(\sigma_f^*)_3 = (\rho^*/\rho_s)\sigma_{fs} = \frac{h/l+2}{2(h/l+\sin\theta)\cos\theta} \left(\frac{t}{l}\right)\sigma_{fs}$$

- If cell walls cracked (a >> l) and crack propagates in plane normal to x_3 :
 - $\circ \text{ Toughness, } G_c^* = (\rho^*/\rho_s)G_s$
 - Fracture toughness, $K_{Ic}^* = \sqrt{E^*G_c^*} = \sqrt{(\rho^*/\rho_s)E_s(\rho^*/\rho_s)G_{cs}} = (\rho^*/\rho_s)K_{Ics}$

Out-of-plane: brittle crashing

 $\sigma_{cs} = \text{compressive strength of cell wall}$

$$(\sigma_{cr}^*)_3 = (\rho^*/\rho_s)\sigma_{cs}$$
 brittle materials: $\sigma_{cs} \approx 12\,\sigma_{fs}$
 $\approx 12(\rho^*/\rho_s)\sigma_{fs}$

MIT OpenCourseWare http://ocw.mit.edu

 $3.054\ /\ 3.36$ Cellular Solids: Structure, Properties and Applications $\mbox{Spring 2015}$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.