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Sandwich structures in nature

e Previously, saw sand structures efficient in resisting bending, buckling
e Sandwich panels also appear in nature:
o leaves of monocotyledon plants (grasses, corn, iris)
o skulls (esp. birds)
o shells of some arthropods (e.g. horseshoe crab)
o cuttlefish bone (mollusk)
Leaves
e Leaves must provide for structural support as well as large surface area for photosynthesis
e Iris, cattail, ryegrass, giant feather grass - leaves all sandwich structures
Iris leaves
e Nearly fully dense ribs (sclerenchyma) running along length of outer surfaces

e Ribs separated by a core of foam-like parenchyma cells



L eaves

Photo of Blaschka glass flowers (iris) at the Harvard Museum of Natural
History. Courtesy of Andrew Kuchling on Flickr. License: CC-BY.



https://www.flickr.com/photos/akuchling/60193085
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Iris Cattail
(Bulrush)



| eaves

Figures removed due to copyright restrictions. Figure 1: Vincent, J. F. V. "The Mechanical Design of Grass."
Journal of Material Science 17 (1982): 856-60. Figure 2: Vincent, J. F. V. "Strength and Fracture of Grasses."
Journal of Material Science 26 (1991): 1947-50.



https://www.flickr.com/photos/linden_tea/2576147887
http://link.springer.com/article/10.1007%2FBF00540384

Iris leaf

Figures removed due to copyright restrictions. See Figures 3 and 4: Gibson, L. J., M. F. Ashby, et al.
"Structure and Mechanics of the Iris Leaf." Journal of Material Science 23 (1988): 3041-48.



http://link.springer.com/article/10.1007/BF00551271

Outer face ~ — ribs connected by single layer of roughly square cells
— jointly act as fiber reinforced composite

Measurements of leaf microstructure summarized in Table
Can analyze leaf as a sandwich structure
Compare analysis with bending tests on fresh iris leaves

— cantilevers with weights hung from free end (B; = 3, By = 1)

( I ) 2r N l
P calc_SZ?fth2 szC
t,c measured from micrographs (Table)

b, from beam bending tests
E;, G need to estimate



can be estimated from E;, Vi, in face (neglect contribution of square cells in
face)

ribs — sclerenchyma

previous studies — sclerenchyma from grass leaf fibers Eqqor = 2-23 GPa
tensile tests on iris leaves E,;, = 21 GPa

volume fraction of ribs in the faces is 0.39

E; =0.39E,; = 8.2 GPa

assume tissue fresh (E parenchyma constant at high /normal turgor pressure)
data for Eparenchyma = 0.9-6 MPa

take Eparenchyma ~ 4 MPa

Gz ~ 1/2 Eparenchyma = 2 MPa



Parenchyma Properties

Plant Young's Compressive Reference
material modulus, E strength, o
or shear modulus, MPa) R
G’ (MPa) Wita
Apple E = 031-346 0.66 Ove et al., 2007
Apple E=2858 0.25-0.37 Lin & Pitt, 1986
Apple G =1-6 Vincent, 1989
Potato E =36 13 Lin & Pitt, 1986
Potato E =35 Scanlon et al, 1996
Potato E =55 0.27 Hiller & Jeronimides,
1996
Potato G =05-1 Scanlon et al., 1996;
1998
Carrot E'=2-14 Georget et al., 2003

Data for fresh, wet tissue, at normal turgor.

Gibson, L. J., M. Ashby, and B. A. Harley. Cellular Materials in Nature and Medicine. Cambridge

University Press. © 2010. Figure courtesy of Lorna Gibson and Cambridge University Press.




Using sandwich beam theory, can estimate P/§ (Table)

Calculation complicated by irregular thickness of core across section:

Rough attempt to account for this by dividing cross-section into sub-units

=

Found calculated P/p overestimated measured P/p by 16-83%

Agreement OK for the various approximations and estimates mode

Strength of the leaf

Faces: 0,5 =7

e Previous tests on tensile strength of gross leaves found
o¢ (in MPa) = 1.44 (Viclerenchyma X 100) + 1.53
/]\

vol. fraction

e In iris, ribs (assume all sclerenchyma) are 80% dense and make up 40% of face
oyr = 1.44(0.8 x 0.4 x 100) + 1.53 = 47 MPa
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Iris Sandwich Analysis

Table 6.2 Beam bending results

Specimen 1

Measured beam stiffness, P/6 (N /mm) 0.66

Beam length, I (mm) 35

Face thickness, f(mm) 0.03
Maximum core thickness, ¢ (mm) 4.63
Width, b (mm) 18
Flexural rigidity, D (Nm”) 0.027
Bending compliance, (§/P), (m/N) 529x10°¢
Shear compliance, (§/P), (m/N) 299x10°

Calculated beam stiffness, P/d (N/mm) 1.21

Calculated / measured beam stiffness 1.83

2

0.54

35
0.03
331
18
0.016

8.98 x10°
3.83x10°
0.78
1.44

3

0.41

35
0.03
249
18
0.0096

1.49 x 107
483 x10"
0.51
1.24

0.25

35
0.03
1.51
18
0.0051

2.83 x10°
6.3 x 10"
029

1.16

Gibson, L. J., M. Ashby, and B. A. Harley. Cellular Materials in Nature and Medicine. Cambridge

University Press. © 2010. Figure courtesy of Lorna Gibson and Cambridge University Press.
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Core: 77 =7

e Literature ~ 0.4 MPa (parenchyma)

*
Jtenstion

e Expect 7 ~ 1/207 ion ~ 0.2 MPa

e (Calculate strength of iris leaf in wind — cantilever, uniformly distributed load
(B3=2 By=1)

e Calculate loads at base of leaf (M,,4,): t ~ 0.03 mm [ ~ 600 mm

o Py t 0.03y
face yielding: v B3 oy (l> = (2)(47 MPa) ( 600> = 4.7 kPa
Pt .
face wrinkling: bi = 0.57 By By EX*(t/1) = (0.57)(2)(8.2 x 10°)/3 (4 x 106)2/3(%)
C

PCS
core shear: e = By 1) = (1) (0.2MPa) = 200 kPa
c

e Expect leaf failure by face wrinkling
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e Are iris leaves optimized?
o 0,/ = 0.22-0.57 in specimens tested

o in minimum weight design for given stiffness 05/, = 2

o

but leaves have several functions beyond mechanical support:
— photosynthesis requires large surface area

— fluid transport

o

difficult to quantify relative importance of each function to plant

o engineering optimization not possible

Additional examples of sandwich structures in nature:

e Marine “leaves” seaweed Durvillaea antarctica: fronds 12 m long
honeycomb core

e Bird skulls
o if inner and outer face concentric — trabeculae oriented perpendicular to cortical shell
o if inner and outer face not concentric — trabeculae foam-like
o larger birds have multiple sandwiches
— since size of trabeculae relatively constant, this may allow larger core thickness

o owl skull — asymmetry — improves hearing
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http:0.22-0.57

Comparison of optimized sandwich plate with solid plate of same stiffness

e Consider circular plate, radius R, simply supported ground circumference, subject to a uniformly
distributed load ¢ (N/m?)

e Central plate deflection is w
e If sandwich is optimized (based on analysis in book p.384)
R\ 3/5

I:ags = 1.49 (zE) psR (foam core)
e Equivalent solid plate:

mass qg R\1/5

—089 (L2) " p,R
T R? wk, P

Taking the ratio:

Mgsandwich — 167 < q R >0'27
Msolid . WES

Consider bone sandwich, “foamed” trabecular core: R=100 mm, P=500 N, w = 1 mm
(= gmnR?) E,=18 GPa

q R _ 104 Msandwich 1497 optimized bone sandwich would be
wE, Mend = 14% weight of solid cortical panel
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Additional examples (continued)
e Cuttlefish bone (not a fish — a mollusk; not bone — CaCos)
e Horseshoe crab shell

e Tortoise shell (Galapagos)
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Durvillaea antarctica
(New Zealand Seakelp)

Largest intertidal seaweed
Fronds up to 12m long
Fronds have gas-filled
honeycomb-like core that
provides buoyancy as well
as flexural rigidity,
maximizing surface area
exposed to sunlight

© Avenue on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our
Creative Commons license. For more information, see: http://ocw.mit.edu/help/faqg-fair-use/.

http://en.wikipedia.org/wiki/File:Dried bull kelp (Durvillaea antarctica) with cross-
section showing honeycomb structure IMG 102 1239.JPG
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http://ocw.mit.edu/help/faq-fair-use/
http://en.wikipedia.org/wiki/File:Dried_bull_kelp_(Durvillaea_antarctica)_with_cross-section_showing_honeycomb_structure_IMG_102_1239.JPG
http://en.wikipedia.org/wiki/File:Dried_bull_kelp_(Durvillaea_antarctica)_with_cross-section_showing_honeycomb_structure_IMG_102_1239.JPG
http://tinyurl.com/bull-kelp

Bird Skulls

Images of bird skulls removed due to copyright restrictions. See Figure 6.7: Gibson, L. J.,
M. Ashby, et al. Cellular Materials in Nature and Medicine. Cambridge University Press, 2010.
http://books.google.com/books?id=AKxiS4AKpyEC&pg=PA176
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http://books.google.com/books?id=AKxiS4AKpyEC&pg=PA176

Courtesy of Alison Curtis. Used with permission.

Alison Curtis
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Photo of owl imprint in the snow removed due to copyright restrictions.

No footprints in the snow from mouse or vole; animal was under the snow
http://www.twincitiesnaturalist.com/2010/01/barred-owl-hunting-in-snow.html
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http://www.twincitiesnaturalist.com/2010/01/barred-owl-hunting-in-snow.html
http://www.twincitiesnaturalist.com/2010/01/barred-owl-hunting-in-snow.html

Photo removed due to copyright restrictions. See Summit Post.
http://www.summitpost.org/disappearing-rabbit-trick/185785/c-186336

Rabbit tracks in snow
http://www.myconfinedspace.com/2006/12/21/owl-snowprint/
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http://www.summitpost.org/disappearing-rabbit-trick/185785/c-186336
http://www.myconfinedspace.com/2006/12/21/owl-snowprint/

Cuttlefish bone
Mollusc shell (CaCO,

Image is in the public domain.
Source: Wikimedia Commons.

Gibson, L. J., M. Ashby, and B. A. Harley. Cellular Materials in Nature and Medicine. Cambridge
University Press. © 2010. Figure courtesy of Lorna Gibson and Cambridge University Press.
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http://commons.wikimedia.org/wiki/File:CuttleFishBostonAquarium.jpg

Horseshoe Crab Shell

CROSS-SECTION
SHELL

HOLLOW
REGION

FOAM

Figure 148: M. A. Meyers, P. -Y. Chen, et al. Progress in Materials Science 53 (2008): 1-206.
Courtesy of Elsevier. Used with permission.
http://www.sciencedirect.com/science/article/pii/S0079642507000254

Meyers et al., 2008
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http://www.sciencedirect.com/science/article/pii/S0079642507000254

Galapagos Tortoise Shell
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