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Introduction 

This document will outline the theoretical background and operating principles of a general 
finite element code which has been developed for research and teaching of materials processing 
operations, and present examples of its use. Some of this information is rather condensed, 
and the reader will probably wish to consult additional sources such as those listed in the 
References section for more thorough treatment of topics in transport theory and finite element 
methodology. 

The finite element code to be discussed here has been developed for plane or axisymmetric 
problems in viscous fluid flow, such as might occur in polymer melt processing. Many other flow 
types can be handled as well, but polymer processing provides a convenient means of outlining 
the code’s features and underlying numerical algorithms. Polymer processing problems typically 
involve the flow of incompressible viscous liquids at low Reynolds’ numbers (“creeping” flow), in 
irregular geometries. It is common in such problems to have nonisothermal conditions prevail, 
and for the polymer to experience chemical reaction during processing. To model such problems 
satisfactorily, the code has been developed to solve for velocities, temperatures, and extent of 
chemical reaction simultaneously. 

The finite element method consists of recasting the governing differential equations of engi-
neering boundary value problems as a sequence of linear or nonlinear algebraic equations: 

Kij aj = fi (1) 

Here aj and fi denote column vectors which in the case of stress analysis problems are the 
displacements and externally applied forces at discrete points, or “nodes,” which have been 
placed in the solution domain. The Kij is a square matrix array which relates the displacement 
at node j to the force at node i. Finite element codes assemble the Kij matrix from contributions 
of “elements” which have been placed in the solution domain so as to encompass the nodes. Once 
Kij has been created, the unknown values of aj can be computed by Gaussian reduction or other 
well-known techniques for solving sets of simultaneous algebraic equations. 

The flow code follows this same approach, but in a somewhat more general way. The dis-
placement vector aj is now regarded as generalized entity, which can include nodal values of 
flow velocity, temperature, concentration of reactive species, or streamfunction. The generalized 
force vector fi contains those entities which correspond to the generalized displacements, as 
follows: 

1 



Generalized Generalized 

displacement Force 

velocity 

temperature 

species concentration 

stream function 

force 

heat flux 

species flux 

velocity gradients 

Since velocity is a vector with two components while the other quantities are scalars, there 
can be up to five degrees of freedom at each node. It is not necessary to include variables 
which are not needed for a particular problem, and the user is able to define which degree of 
freedom numbers apply to which variables. For instance, a problem in which only velocities and 
stream functions are needed might use degree of freedom numbers 1, 2, and 3 for x-velocity (u), 
y-velocity (v), and streamfunction (ψ), respectively. Temperature and species concentration 
would not be computed, and memory would not be allocated for them. 

1 Theoretical Background 

1.1 Governing Equations 

Finite element formulations for linear stress analysis problems are often derived by direct rea-
soning approaches. Fluid flow problems, however, are often viewed more easily in terms of their 
governing differential equations, and this is the approach used in the development of the pro-
cessing code. The equations which govern the nonisothermal flow of a reactive fluid are derived 
in several texts on transport phenomena and polymer processing (e.g. References 1,2). These 
are the familiar conservation equations for transport of momentum, energy, and species: 

∂u 
� 

ρ 
∂t 

� 

+ u∇u = −∇p + ∇(η∇u)  (2)  � � 
∂T 

ρc 
∂t 

+ u∇T = Q + ∇(k∇T )  (3)  � � 
∂C 
∂t 

+ u∇C = R + ∇(D∇C)  (4)  

Here u, T , and  C are fluid velocity (a vector), temperature, and concentration of reactive species; 
these are the principal variables in our formulation. Other parameters are density (ρ), pressure 
(p), viscosity (η), specific heat (c), thermal conductivity (k), and species diffusivity (D). The ∇ 
operator is defined as ∇ = (∂/∂x, ∂/∂y). The similarity of these equations is evident, and leads 
to considerable efficiency in the coding of their numerical solution. In all cases, the time rate of 
change of the transported variable (u, T , or  C) is balanced by the convective or flow transport 
terms (e.g. u∇T ), the diffusive transport (e.g. ∇[k∇T ]) and a generation term (e.g. Q). 

In conventional closed-form analysis, one generally seeks to simplify the governing equations 
by dropping those terms whose numerical magnitudes are small relative to the others, and then 
proceeding with a formal solution. In contrast, all the terms (except u∇u, for now) are present 
in the processing code and the particularization to specific problems is done entirely by the 
selection of appropriate numerical parameters in the input dataset. 
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The units must be given special attention in these equations, especially as materials prop-
erties obtained from various handbooks or experimental tests will usually be reported in units 
which must be converted to obtain consistency when used in the above equations. The governing 
equations are volumetric rate equations. For instance, the heat generation rate Q is energy per 
unit volume per unit time, such as N-m/m3 -s if using SI units. The user must select units for all 
parameters so that each term in the energy equation will have these same units. 
Q and R are generation terms for heat and chemical species respectively, while the pressure 

gradient ∇p plays an analogous role for momentum generation. The heat generation arises from 
viscous dissipation and from reaction heating: 

Q = τ : γ̇ + R(∆H)  (5)  

where τ and γ̇ are the deviatoric components of stress and strain rate, R is the rate of chemical 
reaction, and ∆H is the heat of reaction. R in turn is given by a kinetic chemical equation; in 
our model we have implemented an m-th order Arrhenius expression: 

−E† 
R = k0 exp Cm (6)

Rg T 

where k is a preexponential constant, E† is an activation energy, and Rg = 8.31  J/mole-◦K is 
the Gas Constant. 

The viscosity η is a strong function of the temperature and the shear rate for many fluids, and 
the flow code has been written to include a Carreau power-law formulation for shear thinning 
and an Arrhenius expression for thermal thinning. The formal equation is: 

2
η = η0 exp 

−Eη 
1 +  (λγ̇)2 

� n−1 
(7)

Rg T 

Here η0 is the “zero-shear” viscosity limit, Eη is an activation energy for thermal thinning, λ is a 
shape parameter, and n is the power-law exponent. This formulation is admittedly not suitable 
for all cases, such as liquids exhibiting strong elastic effects, but it is commonly used in much 
of the literature for viscous flow rheology. 

The boundary conditions for engineering problems usually include some surfaces on which 
values of the problem unknowns are specified, for instance points of known temperature or 
initial species concentration. Some other surfaces may have constraints on the gradients of these 
variables, as on convective thermal boundaries where the rate of heat transport by convection 
away from the surface must match the rate of conductive transport to the surface from within 
the body. Such a temperature constraint might be written: 

h(T − Ta) =  −k∇T · n on Γh (8) 

Here h is the convective heat transfer coefficient, Ta is the ambient temperature, and n is the 
unit normal to the convective boundary Γh. 

1.2 The Finite Element Formulation 

Of course, it is usually impossible to solve the above set of equations in closed form, especially in 
light of the irregular boundary conditions often encountered in engineering practice. However, 
the equations are amenable to discretization and solution by numerical techniques such as finite 
differences or finite elements. A full treatment of the finite element method is beyond the scope 
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of this document, and the reader is referred to standard texts (e.g. [5,6]) for a more complete 
description. However, we will outline briefly the approaches used by the flow code, so the 
reader can see the overall scope of the method. This introduction will help in selecting various 
code options when setting up problems, and should provide an introduction to more extensive 
readings. 

As an illustrative example, consider the specialization of the thermal transport equation to 
a two-dimensional problem in steady conductive heat transfer with internal heat generation and 
constant conductivity: 

0 =  Q + k∇2T (9) 

If a closed-form solution were being attempted, we would use successive integration or other 
mathematical techniques to determine a function T (x, y) which satisfies this equation and also 
the boundary conditions of the problem. This can be done when the boundary conditions are 
sufficiently simple. 

Considering the important case when no closed-form solution can be found, let us postulate 
a function T̃ (x, y) as an approximation to T : 

T̃ (x, y) ≈ T (x, y) (10) 

Many different forms might be adopted for the approximation T̃ . The finite element method 
discretizes the solution domain into an assemblage of subregions, or “elements,” each of which 
have their own approximating functions. Specifically, the approximation for the temperature 
T̃ (x, y) within an element is written as a combination of the (as yet unknown) temperatures at 
the nodes belonging to that element: 

T̃ (x, y) =  Nj (x, y)Tj (11) 

Here the index j ranges over the element’s nodes, Tj are the nodal temperatures, and the 
Nj are “interpolation functions.” These interpolation functions are usually simple polynomials 
(generally linear, quadratic, or occasionally cubic polynomials) which are chosen to become unity 
at node j and zero at the other element nodes. The interpolation functions can be evaluated at 
any position within the element by means of standard subroutines, so the approximate temper-
ature at any position within the element can be obtained in terms of the nodal temperatures 
directly from Equation (11). 

Since T̃ is an approximation rather than the true solution, we would expect that for a given 
set of approximate nodal temperatures Equation (8) would not be satisfied exactly: 

Q + k∇2T̃ �= 0 (12) 

One powerful method for selecting the nodal temperatures so as to achieve a form of global 
accuracy is to ask not that the governing equation be satisfied identically everywhere within the 
element, but only that its integral over the element volume be as small as possible: 

(Q + k∇2T̃ ) dV = R ≈ 0 (13) 
V 

Here R is the “residual” of the approximation; it would clearly be zero if T̃ happened to equal 
the true solution T . 

Equation (13) provides only a single equation for each element, which would not be sufficient 
to determine all of the nodal temperatures in the approximation. However, we can obtain a 
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number of such residual equations by premultiplying the integrand by a “weighting function” 
which might, for instance, be chosen to enforce accuracy at a number of different points in the 
solution domain. This might involve choosing a weighting function which is unity in the vicinity 
of a point at which the approximation should be accurate (i.e. have a zero residual), and zero 
elsewhere. This is just what the interpolation functions do, and the “Galerkin” weighted residual 
method takes the weighting functions and the interpolation functions to be the same. The set 
of weighted residual equations then becomes: 

Ni(Q + k∇2T̃ ) dV = R ≈ 0 (14) 
V 

It is convenient to integrate Equation (14) by parts to reduce the order of differentiation; 
this also introduces the thermal boundary conditions in a natural way. The second-order term 
is expanded as: 

T dV  = Nik∇T̃ · n dΓ − ∇Nik∇ ˜Nik∇
2 ˜ T dV  (15) 

V Γ V 

Here Γ is the element boundary, and n is the unit normal to the boundary. Using Equation (8) 
for the boundary convection condition, Equation (14) becomes: 

T dV  = V NiQdV  + Nik∇T̃ · n dΓ∇Nik∇ ˜
Γ 

V 

= NiQdV  − Γ Nih(T̃ − Ta)dΓ (16) V 

Now using expression for T̃ from Equation (11) and factoring out the nodal temperatures 
which are not functions of x and y, we obtain a relation in which the nodal temperatures are 
related to the nodal heat fluxes: 

kij Tj = qi (17) 

where � � 
kij = ∇Nik∇Nj dV + NihNj dΓ (18) 

V Γ 

and � � 
qi = NiQdV  + NihTa dΓ (19) 

V Γ 

Of course, the integrals in the above equations must be replaced by a numerical equivalent 
acceptable to the computer. Gauss-Legendre numerical integration is commonly used in finite 
element codes for this purpose, since that technique provides a high ratio of accuracy to com-
puting effort. Stated briefly, the integration consists of evaluating the integrand at optimally 
selected integration points within the element, and forming a weighted summation of the inte-
grand values at these points. In the case of integration over two-dimensional element areas, this 
can be written: � 

f (x, y) dA ≈ f (xl, yl)wl (20) 
A l 

The location of the sampling points xl, yl and the associated weights wl are provided by 
standard subroutines. In most modern codes, these routines map the element into a convenient 
shape, determine the integration points and weights in the transformed coordinate frame, and 
then map the results back to the original frame. The functions used earlier both for interpolation 
and residual weighting can be used for the mapping as well, achieving a significant economy in 
coding. This yields what are known as “numerically integrated isoparametric elements,” and 
these are a mainstay of the finite element industry. 
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Equations (17)–(19), with the integrals replaced by numerical integrations of the form in 
Equation (20), are the finite element counterparts of Equation (9), the differential governing 
equation. The computer will use these by looping over each element, and over each integration 
point within the element. At each integration point, the integrands for the various terms, such 
as kij as given in Equation (18) must be computed. A simplified flow chart for the formation of 
the kij thermal stiffness matrix is shown below: 

begin loop over elements 

obtain integration points and weights for element 

loop over element integration points (l subscript) 

obtain interpolation functions at integration point 

loop over nodes (i subscript) 

loop over nodes (j subscript) 

compute integrand 

add to thermal stiffness matrix 

end inner node loop 

end outer node loop 

end loop over integration points 

end loop over elements 

It can be appreciated that a good deal of computation is involved just in forming the terms 
of the stiffness matrix, and that the finite element method could never have been developed 
without convenient and inexpensive access to a computer. 

The description above treats only two terms of one of our governing equations; similar 
procedures were used in the flow code to treat all of the terms in Equations (2)–(4), with some 
special techniques needed occasionally as will be discussed below. The contributions of all needed 
terms are computed by a single element routine, and are added to the locations in the stiffness 
matrix associated with the degree of freedom number for the variable under consideration. One 
additional element type is used for boundaries on which convective heat transfer occurs. 

1.3 The Penalty Method for Incompressible Fluids 

The momentum equation requires special treatment, because here we seek a solution for the nodal 
velocities which satisfy an incompressibility constraint in addition to minimizing the residual 
of the Galerkin equations. At present, there are two principal methods available for enforcing 
incompressibility: one introduces the pressure as an independent nodal variable, and the other 
employs a “penalty” formulation which does not require additional variables. The flow code 
uses the penalty formulation, although future developments may include the velocity-pressure 
formulation as an option. 

As described more completely elsewhere [5,11] the penalty formulation dissociates the stresses 
and deformation gradients into dilatational (hydrostatic) and distortional (shearing) compo-
nents, and treats these separately. This is useful in describing polymer molecular response, 
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since the dilatational terms are influential in controlling molecular mobility and such phenom-
ena as glass transition temperature and viscosity which depend on mobility. The distortional 
terms create almost all the dissipation for heating effects, and also are likely to be responsible 
for mechanical degradation of the molecular structure. 

Incompressibility is enforced essentially by taking the bulk compressibility to be a large 
number (a “penalty coefficient”) in comparison with the viscosity, and using this in the relation 
between dilatational stresses and flow rates. However, this tends to make the system of equa-
tions ill-conditioned, and substantial research has been aimed at achieving stable and accurate 
solutions in such cases. A similar problem arises in the deformation of incompressible solids, 
such as rubber. It has been found, however, that the problem of ill conditioning is alleviated by 
integrating the volumetric terms at a lower numerical order than the viscous terms, a process 
known as “selective reduced integration.” 

The user is asked to make several numerical selections in using the penalty method; these 
include the integration orders for both the penalty and regular terms, and the magnitude of 
the numerical factor which is used to “penalize” incompressibility. When using four-noded 
quadrilateral elements, good results have been obtained by taking the penalty integration order 
as 1, the regular order as 2, and the penalty coefficient as 107 times the viscosity. The user 
should consider experimenting with these values, and consulting the technical literature for 
ongoing research with regard to this technique. 

1.4 Algorithms for Coupled and Nonlinear Problems 

The governing equations contain a number of factors which couple the equations together. For 
instance, the flow velocity u appears in the convective terms of the heat and species equations, 
and the heat generation term in the energy equation contains a contribution from the heat of 
reaction as governed by the reaction rate in the species equation. Further, the various material 
constants (viscosity, diffusivity, etc.) are in general functions of the solution variables themselves, 
rendering the problem nonlinear in the material sense. The flow code is capable of a variety of 
iterative techniques for solving such problems. 

The flexibility of the flow code in solving these varied problems types arises from its basic 
control strategy, which is taken from that suggested by Prof. R.L. Taylor in the Zienkiewicz 
textbook, The Finite Element Method [5]. Rather than solving the matrix equation Ka = f 
directly, the flow code uses an “unbalanced force vector” approach in which the right hand side 
is the difference between the imposed value of f and the product Ka using the current estimate 
for a: 

K∆a = f − Ka0 (21) 

Solution of this system than gives the change ∆a = a − a0 relative to the initial estimate a0 
which will be necessary in a to eliminate the unbalanced force. 

Also following the Taylor approach, the flow code controls code execution by means of a series 
of macro commands which are appended to the input dataset. For a simple linear problem, four 
keywords would be used: 

form — form the unbalanced force vector (the right hand side of the equation set). 

tang — assemble the stiffness matrix Kij (also known as the “tangent” stiffness matrix). 

solv — solve the assembled set of equations, i.e. solve for the change vector ∆a, and  add it  to  
the previous estimate for displacements a0. In  this  case,  the  a0 will be just the specified 
boundary values for a, with the unconstrained displacements taken initially as zero. 
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disp — send the computed displacements to the output datafile. 

To illustrate the capability offered by this macro-controlled code logic, consider the case of 
a partially coupled problem, such as one in which the streamfunctions ψ(x, y) are desired in 
addition to the flow velocities. (The streamfunctions coincide with the fluid particle pathlines in 
steady flow problems, and are very useful in plotting the results of flow simulations.) The right 
hand side of a suitable governing equation for the streamfunctions depends on the velocities 
according to the following equation: 

∂2ψ ∂2ψ ∂u ∂v 
+ = − 

∂x2 ∂y2 ∂y ∂x 
(22) 

Using the Galerkin treatment, the finite element counterpart of this equation is: 

∂u ∂v 
∇Ni∇Nj dV ψj = Ni − dV (23) 

V V ∂y ∂x 

It is seen that the unbalanced force vector cannot be computed correctly until the velocity 
gradients are known; although the left hand side (the streamfunction stiffness matrix) does 
not depend on the velocities. (Neither does the velocity depend on the streamfunction, so the 
problem is only partially coupled.) 

This situation can be handled by performing the form-solv macros twice. After the first 
pass, the velocities will be correct, but the stream functions will not, because they were computed 
before the correct velocities were available. In the second pass, the streamfunction equation will 
use the corrected velocities and the streamfunctions will then be computed correctly. The tang 
macro need not be recomputed, since it has no terms which depend on the velocities. The macro 
keyword list for this might be: 

tang 

form 

solv 

form 

solv 

disp 

The macro set includes a loop command, so the above list might also be written: 

tang 

loop 2 

form 

solv 

next 

disp 

All macro commands between loop and next will be repeated a number of times given by the 
argument in column 15 of the loop line. 

Next, consider a fully nonlinear problem in which the material parameters may depend on the 
solution variables and the equations are fully coupled. An example might be a nonisothermal 
flow problem in which the viscosity is allowed to vary with temperature and the convective 
transport of heat is significant. More complicated iterative approaches must be used in such 
problems. In “Newton-Raphson” iteration, the stiffness matrix is recomputed at each step and 
an updated solution for the nodal unknowns is obtained from the current unbalanced force 
vector. The macro keywords for this would be: 

8 



� 

� � 

loop 15 

tang 

form 

solv 

next 

disp 

This will direct the code to perform 15 iterations or until a preset tolerance is reached. 
Techniques for nonlinear problems are diverse and often complicated, and the flow code is able 
to carry out several strategies depending on the macro keywords. The reader is directed to 
Reference [5] for a more complete discussion of these macros and their use in setting up a 
variety of solution modes. 

1.5 Streamline Upwinding for Convective Transport 

Convective transport of heat or chemical species in flow problems deserves special note. A 
Galerkin treatment of the heat convection term ρc u∇T , for instance, gives: 

kij,conv = Niρc u∇Nj dV (24) 
V 

Apart from the fact that this expression gives an unsymmetric stiffness (the tang macro must be 
replaced by utan to solve the system satisfactorily), no unusual features are apparent. However, 
the stability criteria governing this first-order term are different than those for the other (second 
order) terms, and it is common to find that incorporation of convective terms leads to oscillatory 
or unstable results. 

Simulation of convection-dominated flow is accomplished in the flow code by means of a 
“streamline upwinding” formulation [12]. Briefly stated, this involves increasing the viscosity 
artificially along the streamline direction, which improves stability without distorting the velocity 
predictions in the “crosswind” direction excessively. This technique is relatively well accepted as 
a valid means of obtaining stable results from equations having strong first order terms, although 
it is not completely without controversy. Almost certainly, the increased stability is gained at 
some expense in accuracy. 

The user has three choices for treating convection, controlled by the selection of the “con-
vection integration order” parameter. If this parameter is set to 0, the convective terms are 
not included at all. If set to 1, streamline upwinding is used. If set to 2, conventional Galerkin 
handling is used (likely with unsatisfactory results unless very fine meshes are used, but feel free 
to experiment). 

1.6 Algorithm for Transient Problems 

The finite element method can handle transient problems by using a variety of time-stepping 
algorithms adapted from finite-difference technique. The governing equations for transport 
involve only the first derivative of time, and this renders the extension to transient problems 
simple and efficient. When the time derivative terms are added, the finite element matrix 
equations take the form: 

da 
C + Ka = f (25)

dt 
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where the C matrix stores the inertial influences and da/dt is the derivative vector of the nodal 
variables. For instance, the ρc(∂T /∂t) inertial term for the energy equation is obtained from 
the Galerkin procedure as: 

Cij = NiρcNj dV (26) 
V 

Equation (25) can be written in finite difference form as: 

an+1 − an
C + K[θan+1 + (1  − θ)an] =  f (27)

∆t 

Here the an and an+1 indicate the solution variables at time n and n + 1, respectively. The 
forcing terms f are assumed constant over a small time increment ∆t, and  θ is a parameter 
between 0 and 1 which allows the time stepping scheme to be adjusted between forward and 
backward differencing. The method is unconditionally stable for θ ≥ (1/2), and θ = (2/3) 
corresponds to a Galerkin-like treatment of the time derivative terms. 

Rearranging, this relation becomes: 

[(C/∆t) +  θK]∆a = f − Kan (28) 

where ∆a = an+1 − an. This implicit relation permits the values an+1 at the end of the next 
time increment ∆t to be computed from the current values an. 

The right hand side is treated just as in steady problems, since the unbalanced force vector 
approach already subtracts the Kan term from f . The only difference is that the stiffness matrix 
K must be multiplied by θ and the (C/∆t) term must be added; this is done when the user 
sets the “time-stepping flag” in the material property portion of the input dataset (the section 
following the mate keyword) to be 1 rather than 0. A macro list for a transient problem might 
look like the following: 

init 

dt 10 

disp 

tang 

loop 20 

time 

form 

solv 

disp 2 

next 

end 

1 15 300. 

16 30 400. 

stop 

The keyword init instructs the computer to read the data following the end keyword for 
setting the nodal initial values. In this cases, the first degree of freedom for nodes 1 through 
15 are set to 300.0, and nodes 16 through 30 are set to 400.0. A blank line is used to end 
these initializing data. The keyword dt sets the time step to 10 (the units, as always, are up to 
the user). The disp which follows next spools the initial values to the output file. The tang 
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command here appears outside the loop; this will save a good deal of computing time, and is 
permissible if nothing in the stiffness matrix changes with time. Next, we ask for 20 time steps; 
each begins with the time command, which adds ∆t to the current time. The displacements 
will be spooled for output at every second time step, as indicated by the ‘2’ in column 15 of the 
disp command. 

2 Example Problems 

The numerical algorithms outlined above have been coded in Fortran and implemented on a 
number of computer systems of varying size. An implementation for the IBM-PC and compatible 
family of microcomputers was accomplished with no special difficulties, although some extra 
caution was needed to insure that the Fortran compiler computed array addresses beyond 64 
kilobytes correctly. The PC version requires the presence of a math coprocessor and 450K of 
available memory, and is accompanied by a graphics postprocessing module which requires an 
EGA display system. 

The PC distribution disk has a number of demonstration datasets, named demo1 through 
demo6. These can be run by giving the name of the datafile to be used as input on the command 
line; for instance to run demo1, simply type  flow demo1. The run log will appear on the screen, 
and when the job is complete the files demo1.plt and demo1.out will be stored in the current 
directory. The .out file is a formatted listing of numerical values produced by the code; it can 
be displayed on the terminal monitor or sent to the printer as desired. The .plt file contains 
the same numerical results, but without quite so much formatting; it is intended to be read in 
by a postprocessing code in order to generate graphical views of the output. Once flow demo1 
has been run, the results can be viewed graphically by typing post demo1. 

As inspection of the demonstration datasets will indicate, the preparation of input datasets 
for finite element analysis can be a tedious and error-prone chore. For any but the most simple 
problems, it is essential that a computerized “preprocessor” be employed to generate the dataset. 
Discussion of available preprocessors is beyond the scope of this document, but the reader 
should be aware that several such codes are available both commercially and from finite element 
literature sources. For instance, Reference [14] contains a very useful Fortran listing which can 
be used to generate the lists of nodal coordinates and element connectivities. 

A brief description of these demonstration problems follows: 

2.1 demo1 – simple pressure/drag flow. 

Here we treat a standard textbook problem in fluid mechanics, that of an incompressible viscous 
fluid constrained between two boundaries of infinite lateral extent. Although idealized, this 
problem is often used to model the down-channel flow in a melt extruder [4]. A positive pressure 
gradient is applied in the x-direction, and the upper boundary surface at y = H is displaced 
to the right at a velocity of u(H) =  U . The  y-velocities are all set to zero; the problem 
is underconstrained otherwise. This simple problem was solved by a 10x3 mesh of 4-node 
quadrilateral elements, as shown in Figure 1. Numerical parameters such as η and H are set to 
unity in this example problem. When the problem is linear, numerical results for other problem 
parameters can be obtained by suitable scaling; nondimensionalized units are used in Figure 1 
to emphasize this point. 

The user will find it instructive to compare the resulting velocities u(y) with the theoretical 
values. In this case the theoretical solution requires only the x-direction momentum equation; 

11




� � 

� � � � � � 

Figure 1: Simulation of drag/pressure plane flow. 

after dropping terms which are identically zero, this becomes: 

d2u 1 ∆p 
= 

dy2 η ∆x 
(29) 

Integrating this twice, and applying the boundary conditions u(0) = 0, u(H) =  U , the  velocity  
is given as 

u(y) =
1 ∆p 

Hy  − y 2 + U
y 

(30)
2η ∆x H 

The first term above is the “Poiseuille” parabolic distribution produced by the applied pressure; 
the second term is the linear “Couette” distribution caused by the drag. Figure 2 shows the 
finite-element prediction of this velocity profile for two cases: a Newtonian fluid (power-law 
exponent = 1) and a shear-thinning fluid (power-law exponent = 0.3). The shear-thinning 
analysis is nonlinear, and was accomplished by Newton-Raphson iteration as described earlier; 
the dataset for this case is named demo1a on the PC distribution disk. 

Figure 2: Finite element prediction of plane flow velocity profile. 
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2.2 demo2 – Couette flow with heat generation 

This problem uses the same grid as demo1, and illustrates some additional capability of the flow 
code. Here no pressure gradient is imposed (this is then drag or “Couette” flow only), but we 
also compute the temperatures resulting from internal viscous dissipation. Note that the degree 
of freedom number for temperature is set at 3, and the code is looped twice. (After the first loop 
the velocities are known, but another pass is needed so the heat transfer equations are given the 
correct velocities from which the dissipation can be computed.) 

The shear rate in this case is just γ̇ = (∂u/∂y) =  U/H. The associated stress is τ = ηγ̇ = 
η(U/H ), and the thermal dissipation is then Q = τ γ̇ = η(U/H)2 . The energy equation then 
becomes: 

d2T η U 
�2 

= − 
dy2 k H 

(31) 

This can be solved easily by integrating twice and imposing fixed thermal boundary conditions 
at the top and bottom of the flow channel; here we have set T (0) = T (H) = 0. The temperature 
profile predicted by the code is shown in Figure 3; the reader should compare this with the 
theoretical values. 

Figure 3: Finite element simulation of plane Couette flow with thermal dissipation and conduc-
tive heat transfer. (f) – fixed temperature condition; (c) – convective boundary condition. 

The specific numerical values, of course, reflect the values used as input parameters; the 
unit values used in this simulation give a “Brinkman Number” Br = (QH2)/(kT ) of unity, 
if the characteristic temperature in this definition is also taken as unity. This dimensionless 
parameter, which represents the relative importance of internal heat gneration rate to conductive 
heat transfer rate, can be used in scaling the numerical results for other problem parameters. 

Figure 3 also shows the temperature profile which is obtained if the upper boundary exhibits 
a convective rather than fixed condition; the dataset for this run is demo2a, which  makes  use  
of the convective boundary element discussed earlier. The convective heat transfer coefficient h 
was set to unity; this corresponds to a “Nusselt Number” Nu  = (hH/k) =  1.  

2.3 demo3 – 4:1 entry flow 

Here flow passes from a reservoir into a capillary with a 4:1 constriction ratio. The mesh takes 
advantage of symmetry, so the lower boundary is actually the centerline of a plane capillary 
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entry flow. This is a moderately large problem, one often used to assess code performance by 
the fluid modeling community. However, the mesh is too coarse to resolve certain fine features of 
the flow, such as a recirculation which appears in the stagnation region of the reservoir. A fully 
developed parabolic flow profile is imposed at the left hand boundary, and the streamfunction 
is set to zero along the centerline. The code loops twice to compute both the temperatures and 
the streamfunction (note the streamfunction degree of freedom is set to 4). 

In this dataset, convective heat transfer is neglected and only conductive thermal transport 
is considered (the temperature convection integration order is set to 0 in demo3). The relative 
importance of convective versus conductive heat transfer is indicated by the “Peclet Number,” 
defined as Pe  = ρcUH/k, where  U and H are a characteristic velocity and length for the system. 
(The upstream centerline velocity and the reservoir half-height are convenient choices, and were 
both taken as unity in demo3). The Peclet number is usually large for polymer processing 
operations due to the low thermal conductivity of those materials. For higher Peclet numbers, 
try setting the temperature convection order to 1 (for streamline upwinding) or 2 (for Galerkin 
treatment). Reference [9] contains a further discussion of the finite element analysis of this 
problem. Figure 4 shows the graphical display from post for the mesh and primary variables as 
computed by the code. 

Figure 4: Finite element simulation of 4:1 entry flow with coupled conductive heat transfer. 

When the macro stre is included in the input dataset, the code loops again over the elements 
and computes auxiliary variables which may be related to the gradients of the primary variables. 
These can then be contoured by post, using  the  stress option. Stress components 1 through 
5 refer to vorticity ω, pressure p, and the stresses τxx, τyy , τxy . Some of these, as generated by 
post demo3, are displayed in Figure 5. 

The contours of Figure 5 illustrate that the pressure drop occurs largely in the capillary, 
where it is fairly uniform away from the entrance and exit regions. It should be noted that 
penalty flow formulations are sometimes afflicted with an anomolous “checkerboarding” of the 
computed pressures, in which the pressures oscillate from element to element. The reader is 
referred to Hughes’ paper [11] for a further discussion of this numerical artifact, and how it can 
be avoided or smoothed by suitable postprocessing. 
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Figure 5: Stresses and associated auxiliary variables in 4:1 entry flow 

2.4 demo4 – transient heat conduction 

This is another textbook problem, the famous and challenging differential equation (∂T/∂x) =  
α(∂2 T/∂x2). We apply it here to a one-dimensional transient heat conduction problem, so 
α = (k/ρc) is the thermal diffusivity. However, this analysis is identical to transient species 
diffusion or flow near a suddenly accelerated flat plate, if α is suitably interpreted. A single 
strip of quadrilateral elements is placed along the x-axis, in which all temperatures are initially 
set to zero. The right-hand boundary is then subjected to a step increase in temperature 
(T (H, t) =  TH ), and we want to compute the transient temperature variation T (x, t). This is 
done by setting the time-stepping flag to 1 and looping the code repeatedly as described earlier. 

The temperature profiles along the x-axis at various times are shown in Figure 6. These √ 
values should be compared with the theoretical solution T = erfc[(1−x)/2 αt]. Some numerical 
oscillations are noted at the heated boundary at short times due to the inability of the rather 
coarse mesh and time increment to capture the thermal boundary layer which forms there. 
However, this can easily be avoided if desired by using a finer mesh in that region, and also by 
stepping with shorter time increments initially. 

2.5 demo5 – 10x10 grid, convection check Pe  = 106 

This problem illustrates the handling of convective thermal transport, and is taken from Refer-
ence [12]. As shown in Figure 7, a uniform velocity is imposed on a square mesh in a direction 
skewed to the coordinate axes, and two different temperatures are imposed along the lefthand 
and bottom boundaries. Normalized temperatures are used as shown, and the lower-left-hand 
corner is a compromise at T = 0.5. The temperature of the left boundary should be carried 
along the skew direction by the flow. Observation of the temperature contours, in particular the 
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Figure 6: Temperature profiles in transient heat conduction. 

lack of spreading along the stream direction, shows that streamline upwinding is able to model 
this difficult problem quite well. 

Figure 7: Temperature contours in convection-dominated flow 

2.6 demo6 – thermally-driven buoyancy flow 

This problem uses the same 10x10 mesh of demo5, modified to solve another problem with the 
same geometry. Here the vertical boundaries are held at fixed temperatures, the left hotter than 
the right, while the horizontal boundaries are left unconstrained. A linear temperature gradient 
is thus set up between the left and right boundaries, as can be seen by contouring the third 
degree of freedom in post. A body force term is present in the momentum equation, giving a 
vertical force of ρα(T − Ta), where here α is a coefficient of volumetric thermal expansion. The 
cooler and denser fluid at the right will tend to move down and displace the warm fluid at the 
left, setting up a clockwise circulation as seen in the streamline contour plot of Figure 8. The 
code loops three times, finding the temperatures in the first pass, the velocities which depend 
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on the temperatures in the second pass, and the streamlines which depend on the velocities in 
the third pass. 

Figure 8: Streamlines for thermally-driven buoyancy flow. 
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