
FINITE ELEMENT ANALYSIS OF NONISOTHERMAL

REACTIVE FLOWS

David Roylance
Department of Materials Science and Engineering

Massachusetts Institute of Technology
Cambridge, MA 02139

December 2, 2003

Introduction

This document will outline the theoretical background and operating principles of a general
finite element code which has been developed for research and teaching of materials processing
operations, and present examples of its use. Some of this information is rather condensed,
and the reader will probably wish to consult additional sources such as those listed in the
References section for more thorough treatment of topics in transport theory and finite element
methodology.

The finite element code to be discussed here has been developed for plane or axisymmetric
problems in viscous fluid flow, such as might occur in polymer melt processing. Many other flow
types can be handled as well, but polymer processing provides a convenient means of outlining
the code’s features and underlying numerical algorithms. Polymer processing problems typically
involve the flow of incompressible viscous liquids at low Reynolds’ numbers (“creeping” flow), in
irregular geometries. It is common in such problems to have nonisothermal conditions prevail,
and for the polymer to experience chemical reaction during processing. To model such problems
satisfactorily, the code has been developed to solve for velocities, temperatures, and extent of
chemical reaction simultaneously.

The finite element method consists of recasting the governing differential equations of engi-
neering boundary value problems as a sequence of linear or nonlinear algebraic equations:

Kij aj = fi (1)

Here aj and fi denote column vectors which in the case of stress analysis problems are the
displacements and externally applied forces at discrete points, or “nodes,” which have been
placed in the solution domain. The Kij is a square matrix array which relates the displacement
at node j to the force at node i. Finite element codes assemble the Kij matrix from contributions
of “elements” which have been placed in the solution domain so as to encompass the nodes. Once
Kij has been created, the unknown values of aj can be computed by Gaussian reduction or other
well-known techniques for solving sets of simultaneous algebraic equations.

The flow code follows this same approach, but in a somewhat more general way. The dis-
placement vector aj is now regarded as generalized entity, which can include nodal values of
flow velocity, temperature, concentration of reactive species, or streamfunction. The generalized
force vector fi contains those entities which correspond to the generalized displacements, as
follows:

1

Generalized Generalized

displacement Force

velocity

temperature

species concentration

stream function

force

heat flux

species flux

velocity gradients

Since velocity is a vector with two components while the other quantities are scalars, there
can be up to five degrees of freedom at each node. It is not necessary to include variables
which are not needed for a particular problem, and the user is able to define which degree of
freedom numbers apply to which variables. For instance, a problem in which only velocities and
stream functions are needed might use degree of freedom numbers 1, 2, and 3 for x-velocity (u),
y-velocity (v), and streamfunction (ψ), respectively. Temperature and species concentration
would not be computed, and memory would not be allocated for them.

1 Theoretical Background

1.1 Governing Equations

Finite element formulations for linear stress analysis problems are often derived by direct rea-
soning approaches. Fluid flow problems, however, are often viewed more easily in terms of their
governing differential equations, and this is the approach used in the development of the pro-
cessing code. The equations which govern the nonisothermal flow of a reactive fluid are derived
in several texts on transport phenomena and polymer processing (e.g. References 1,2). These
are the familiar conservation equations for transport of momentum, energy, and species:

∂u
�

ρ
∂t

�

+ u∇u = −∇p + ∇(η∇u) (2) � �
∂T

ρc
∂t

+ u∇T = Q + ∇(k∇T) (3) � �
∂C
∂t

+ u∇C = R + ∇(D∇C) (4)

Here u, T , and C are fluid velocity (a vector), temperature, and concentration of reactive species;
these are the principal variables in our formulation. Other parameters are density (ρ), pressure
(p), viscosity (η), specific heat (c), thermal conductivity (k), and species diffusivity (D). The ∇
operator is defined as ∇ = (∂/∂x, ∂/∂y). The similarity of these equations is evident, and leads
to considerable efficiency in the coding of their numerical solution. In all cases, the time rate of
change of the transported variable (u, T , or C) is balanced by the convective or flow transport
terms (e.g. u∇T), the diffusive transport (e.g. ∇[k∇T]) and a generation term (e.g. Q).

In conventional closed-form analysis, one generally seeks to simplify the governing equations
by dropping those terms whose numerical magnitudes are small relative to the others, and then
proceeding with a formal solution. In contrast, all the terms (except u∇u, for now) are present
in the processing code and the particularization to specific problems is done entirely by the
selection of appropriate numerical parameters in the input dataset.

2

� �

� � �

The units must be given special attention in these equations, especially as materials prop-
erties obtained from various handbooks or experimental tests will usually be reported in units
which must be converted to obtain consistency when used in the above equations. The governing
equations are volumetric rate equations. For instance, the heat generation rate Q is energy per
unit volume per unit time, such as N-m/m3 -s if using SI units. The user must select units for all
parameters so that each term in the energy equation will have these same units.
Q and R are generation terms for heat and chemical species respectively, while the pressure

gradient ∇p plays an analogous role for momentum generation. The heat generation arises from
viscous dissipation and from reaction heating:

Q = τ : γ̇ + R(∆H) (5)

where τ and γ̇ are the deviatoric components of stress and strain rate, R is the rate of chemical
reaction, and ∆H is the heat of reaction. R in turn is given by a kinetic chemical equation; in
our model we have implemented an m-th order Arrhenius expression:

−E†
R = k0 exp Cm (6)

Rg T

where k is a preexponential constant, E† is an activation energy, and Rg = 8.31 J/mole-◦K is
the Gas Constant.

The viscosity η is a strong function of the temperature and the shear rate for many fluids, and
the flow code has been written to include a Carreau power-law formulation for shear thinning
and an Arrhenius expression for thermal thinning. The formal equation is:

2
η = η0 exp

−Eη
1 + (λγ̇)2

� n−1
(7)

Rg T

Here η0 is the “zero-shear” viscosity limit, Eη is an activation energy for thermal thinning, λ is a
shape parameter, and n is the power-law exponent. This formulation is admittedly not suitable
for all cases, such as liquids exhibiting strong elastic effects, but it is commonly used in much
of the literature for viscous flow rheology.

The boundary conditions for engineering problems usually include some surfaces on which
values of the problem unknowns are specified, for instance points of known temperature or
initial species concentration. Some other surfaces may have constraints on the gradients of these
variables, as on convective thermal boundaries where the rate of heat transport by convection
away from the surface must match the rate of conductive transport to the surface from within
the body. Such a temperature constraint might be written:

h(T − Ta) = −k∇T · n on Γh (8)

Here h is the convective heat transfer coefficient, Ta is the ambient temperature, and n is the
unit normal to the convective boundary Γh.

1.2 The Finite Element Formulation

Of course, it is usually impossible to solve the above set of equations in closed form, especially in
light of the irregular boundary conditions often encountered in engineering practice. However,
the equations are amenable to discretization and solution by numerical techniques such as finite
differences or finite elements. A full treatment of the finite element method is beyond the scope

3

�

of this document, and the reader is referred to standard texts (e.g. [5,6]) for a more complete
description. However, we will outline briefly the approaches used by the flow code, so the
reader can see the overall scope of the method. This introduction will help in selecting various
code options when setting up problems, and should provide an introduction to more extensive
readings.

As an illustrative example, consider the specialization of the thermal transport equation to
a two-dimensional problem in steady conductive heat transfer with internal heat generation and
constant conductivity:

0 = Q + k∇2T (9)

If a closed-form solution were being attempted, we would use successive integration or other
mathematical techniques to determine a function T (x, y) which satisfies this equation and also
the boundary conditions of the problem. This can be done when the boundary conditions are
sufficiently simple.

Considering the important case when no closed-form solution can be found, let us postulate
a function T̃ (x, y) as an approximation to T :

T̃ (x, y) ≈ T (x, y) (10)

Many different forms might be adopted for the approximation T̃ . The finite element method
discretizes the solution domain into an assemblage of subregions, or “elements,” each of which
have their own approximating functions. Specifically, the approximation for the temperature
T̃ (x, y) within an element is written as a combination of the (as yet unknown) temperatures at
the nodes belonging to that element:

T̃ (x, y) = Nj (x, y)Tj (11)

Here the index j ranges over the element’s nodes, Tj are the nodal temperatures, and the
Nj are “interpolation functions.” These interpolation functions are usually simple polynomials
(generally linear, quadratic, or occasionally cubic polynomials) which are chosen to become unity
at node j and zero at the other element nodes. The interpolation functions can be evaluated at
any position within the element by means of standard subroutines, so the approximate temper-
ature at any position within the element can be obtained in terms of the nodal temperatures
directly from Equation (11).

Since T̃ is an approximation rather than the true solution, we would expect that for a given
set of approximate nodal temperatures Equation (8) would not be satisfied exactly:

Q + k∇2T̃ �= 0 (12)

One powerful method for selecting the nodal temperatures so as to achieve a form of global
accuracy is to ask not that the governing equation be satisfied identically everywhere within the
element, but only that its integral over the element volume be as small as possible:

(Q + k∇2T̃) dV = R ≈ 0 (13)
V

Here R is the “residual” of the approximation; it would clearly be zero if T̃ happened to equal
the true solution T .

Equation (13) provides only a single equation for each element, which would not be sufficient
to determine all of the nodal temperatures in the approximation. However, we can obtain a

4

�

� � �

� � �
� �

�

number of such residual equations by premultiplying the integrand by a “weighting function”
which might, for instance, be chosen to enforce accuracy at a number of different points in the
solution domain. This might involve choosing a weighting function which is unity in the vicinity
of a point at which the approximation should be accurate (i.e. have a zero residual), and zero
elsewhere. This is just what the interpolation functions do, and the “Galerkin” weighted residual
method takes the weighting functions and the interpolation functions to be the same. The set
of weighted residual equations then becomes:

Ni(Q + k∇2T̃) dV = R ≈ 0 (14)
V

It is convenient to integrate Equation (14) by parts to reduce the order of differentiation;
this also introduces the thermal boundary conditions in a natural way. The second-order term
is expanded as:

T dV = Nik∇T̃ · n dΓ − ∇Nik∇ ˜Nik∇
2 ˜ T dV (15)

V Γ V

Here Γ is the element boundary, and n is the unit normal to the boundary. Using Equation (8)
for the boundary convection condition, Equation (14) becomes:

T dV = V NiQdV + Nik∇T̃ · n dΓ∇Nik∇ ˜
Γ

V

= NiQdV − Γ Nih(T̃ − Ta)dΓ (16) V

Now using expression for T̃ from Equation (11) and factoring out the nodal temperatures
which are not functions of x and y, we obtain a relation in which the nodal temperatures are
related to the nodal heat fluxes:

kij Tj = qi (17)

where � �
kij = ∇Nik∇Nj dV + NihNj dΓ (18)

V Γ

and � �
qi = NiQdV + NihTa dΓ (19)

V Γ

Of course, the integrals in the above equations must be replaced by a numerical equivalent
acceptable to the computer. Gauss-Legendre numerical integration is commonly used in finite
element codes for this purpose, since that technique provides a high ratio of accuracy to com-
puting effort. Stated briefly, the integration consists of evaluating the integrand at optimally
selected integration points within the element, and forming a weighted summation of the inte-
grand values at these points. In the case of integration over two-dimensional element areas, this
can be written: �

f (x, y) dA ≈ f (xl, yl)wl (20)
A l

The location of the sampling points xl, yl and the associated weights wl are provided by
standard subroutines. In most modern codes, these routines map the element into a convenient
shape, determine the integration points and weights in the transformed coordinate frame, and
then map the results back to the original frame. The functions used earlier both for interpolation
and residual weighting can be used for the mapping as well, achieving a significant economy in
coding. This yields what are known as “numerically integrated isoparametric elements,” and
these are a mainstay of the finite element industry.

5

Equations (17)–(19), with the integrals replaced by numerical integrations of the form in
Equation (20), are the finite element counterparts of Equation (9), the differential governing
equation. The computer will use these by looping over each element, and over each integration
point within the element. At each integration point, the integrands for the various terms, such
as kij as given in Equation (18) must be computed. A simplified flow chart for the formation of
the kij thermal stiffness matrix is shown below:

begin loop over elements

obtain integration points and weights for element

loop over element integration points (l subscript)

obtain interpolation functions at integration point

loop over nodes (i subscript)

loop over nodes (j subscript)

compute integrand

add to thermal stiffness matrix

end inner node loop

end outer node loop

end loop over integration points

end loop over elements

It can be appreciated that a good deal of computation is involved just in forming the terms
of the stiffness matrix, and that the finite element method could never have been developed
without convenient and inexpensive access to a computer.

The description above treats only two terms of one of our governing equations; similar
procedures were used in the flow code to treat all of the terms in Equations (2)–(4), with some
special techniques needed occasionally as will be discussed below. The contributions of all needed
terms are computed by a single element routine, and are added to the locations in the stiffness
matrix associated with the degree of freedom number for the variable under consideration. One
additional element type is used for boundaries on which convective heat transfer occurs.

1.3 The Penalty Method for Incompressible Fluids

The momentum equation requires special treatment, because here we seek a solution for the nodal
velocities which satisfy an incompressibility constraint in addition to minimizing the residual
of the Galerkin equations. At present, there are two principal methods available for enforcing
incompressibility: one introduces the pressure as an independent nodal variable, and the other
employs a “penalty” formulation which does not require additional variables. The flow code
uses the penalty formulation, although future developments may include the velocity-pressure
formulation as an option.

As described more completely elsewhere [5,11] the penalty formulation dissociates the stresses
and deformation gradients into dilatational (hydrostatic) and distortional (shearing) compo-
nents, and treats these separately. This is useful in describing polymer molecular response,

6

since the dilatational terms are influential in controlling molecular mobility and such phenom-
ena as glass transition temperature and viscosity which depend on mobility. The distortional
terms create almost all the dissipation for heating effects, and also are likely to be responsible
for mechanical degradation of the molecular structure.

Incompressibility is enforced essentially by taking the bulk compressibility to be a large
number (a “penalty coefficient”) in comparison with the viscosity, and using this in the relation
between dilatational stresses and flow rates. However, this tends to make the system of equa-
tions ill-conditioned, and substantial research has been aimed at achieving stable and accurate
solutions in such cases. A similar problem arises in the deformation of incompressible solids,
such as rubber. It has been found, however, that the problem of ill conditioning is alleviated by
integrating the volumetric terms at a lower numerical order than the viscous terms, a process
known as “selective reduced integration.”

The user is asked to make several numerical selections in using the penalty method; these
include the integration orders for both the penalty and regular terms, and the magnitude of
the numerical factor which is used to “penalize” incompressibility. When using four-noded
quadrilateral elements, good results have been obtained by taking the penalty integration order
as 1, the regular order as 2, and the penalty coefficient as 107 times the viscosity. The user
should consider experimenting with these values, and consulting the technical literature for
ongoing research with regard to this technique.

1.4 Algorithms for Coupled and Nonlinear Problems

The governing equations contain a number of factors which couple the equations together. For
instance, the flow velocity u appears in the convective terms of the heat and species equations,
and the heat generation term in the energy equation contains a contribution from the heat of
reaction as governed by the reaction rate in the species equation. Further, the various material
constants (viscosity, diffusivity, etc.) are in general functions of the solution variables themselves,
rendering the problem nonlinear in the material sense. The flow code is capable of a variety of
iterative techniques for solving such problems.

The flexibility of the flow code in solving these varied problems types arises from its basic
control strategy, which is taken from that suggested by Prof. R.L. Taylor in the Zienkiewicz
textbook, The Finite Element Method [5]. Rather than solving the matrix equation Ka = f
directly, the flow code uses an “unbalanced force vector” approach in which the right hand side
is the difference between the imposed value of f and the product Ka using the current estimate
for a:

K∆a = f − Ka0 (21)

Solution of this system than gives the change ∆a = a − a0 relative to the initial estimate a0
which will be necessary in a to eliminate the unbalanced force.

Also following the Taylor approach, the flow code controls code execution by means of a series
of macro commands which are appended to the input dataset. For a simple linear problem, four
keywords would be used:

form — form the unbalanced force vector (the right hand side of the equation set).

tang — assemble the stiffness matrix Kij (also known as the “tangent” stiffness matrix).

solv — solve the assembled set of equations, i.e. solve for the change vector ∆a, and add it to
the previous estimate for displacements a0. In this case, the a0 will be just the specified
boundary values for a, with the unconstrained displacements taken initially as zero.

7

� � � � � �

disp — send the computed displacements to the output datafile.

To illustrate the capability offered by this macro-controlled code logic, consider the case of
a partially coupled problem, such as one in which the streamfunctions ψ(x, y) are desired in
addition to the flow velocities. (The streamfunctions coincide with the fluid particle pathlines in
steady flow problems, and are very useful in plotting the results of flow simulations.) The right
hand side of a suitable governing equation for the streamfunctions depends on the velocities
according to the following equation:

∂2ψ ∂2ψ ∂u ∂v
+ = −

∂x2 ∂y2 ∂y ∂x
(22)

Using the Galerkin treatment, the finite element counterpart of this equation is:

∂u ∂v
∇Ni∇Nj dV ψj = Ni − dV (23)

V V ∂y ∂x

It is seen that the unbalanced force vector cannot be computed correctly until the velocity
gradients are known; although the left hand side (the streamfunction stiffness matrix) does
not depend on the velocities. (Neither does the velocity depend on the streamfunction, so the
problem is only partially coupled.)

This situation can be handled by performing the form-solv macros twice. After the first
pass, the velocities will be correct, but the stream functions will not, because they were computed
before the correct velocities were available. In the second pass, the streamfunction equation will
use the corrected velocities and the streamfunctions will then be computed correctly. The tang
macro need not be recomputed, since it has no terms which depend on the velocities. The macro
keyword list for this might be:

tang

form

solv

form

solv

disp

The macro set includes a loop command, so the above list might also be written:

tang

loop 2

form

solv

next

disp

All macro commands between loop and next will be repeated a number of times given by the
argument in column 15 of the loop line.

Next, consider a fully nonlinear problem in which the material parameters may depend on the
solution variables and the equations are fully coupled. An example might be a nonisothermal
flow problem in which the viscosity is allowed to vary with temperature and the convective
transport of heat is significant. More complicated iterative approaches must be used in such
problems. In “Newton-Raphson” iteration, the stiffness matrix is recomputed at each step and
an updated solution for the nodal unknowns is obtained from the current unbalanced force
vector. The macro keywords for this would be:

8

�

� �

loop 15

tang

form

solv

next

disp

This will direct the code to perform 15 iterations or until a preset tolerance is reached.
Techniques for nonlinear problems are diverse and often complicated, and the flow code is able
to carry out several strategies depending on the macro keywords. The reader is directed to
Reference [5] for a more complete discussion of these macros and their use in setting up a
variety of solution modes.

1.5 Streamline Upwinding for Convective Transport

Convective transport of heat or chemical species in flow problems deserves special note. A
Galerkin treatment of the heat convection term ρc u∇T , for instance, gives:

kij,conv = Niρc u∇Nj dV (24)
V

Apart from the fact that this expression gives an unsymmetric stiffness (the tang macro must be
replaced by utan to solve the system satisfactorily), no unusual features are apparent. However,
the stability criteria governing this first-order term are different than those for the other (second
order) terms, and it is common to find that incorporation of convective terms leads to oscillatory
or unstable results.

Simulation of convection-dominated flow is accomplished in the flow code by means of a
“streamline upwinding” formulation [12]. Briefly stated, this involves increasing the viscosity
artificially along the streamline direction, which improves stability without distorting the velocity
predictions in the “crosswind” direction excessively. This technique is relatively well accepted as
a valid means of obtaining stable results from equations having strong first order terms, although
it is not completely without controversy. Almost certainly, the increased stability is gained at
some expense in accuracy.

The user has three choices for treating convection, controlled by the selection of the “con-
vection integration order” parameter. If this parameter is set to 0, the convective terms are
not included at all. If set to 1, streamline upwinding is used. If set to 2, conventional Galerkin
handling is used (likely with unsatisfactory results unless very fine meshes are used, but feel free
to experiment).

1.6 Algorithm for Transient Problems

The finite element method can handle transient problems by using a variety of time-stepping
algorithms adapted from finite-difference technique. The governing equations for transport
involve only the first derivative of time, and this renders the extension to transient problems
simple and efficient. When the time derivative terms are added, the finite element matrix
equations take the form:

da
C + Ka = f (25)

dt

9

�

� �

where the C matrix stores the inertial influences and da/dt is the derivative vector of the nodal
variables. For instance, the ρc(∂T /∂t) inertial term for the energy equation is obtained from
the Galerkin procedure as:

Cij = NiρcNj dV (26)
V

Equation (25) can be written in finite difference form as:

an+1 − an
C + K[θan+1 + (1 − θ)an] = f (27)

∆t

Here the an and an+1 indicate the solution variables at time n and n + 1, respectively. The
forcing terms f are assumed constant over a small time increment ∆t, and θ is a parameter
between 0 and 1 which allows the time stepping scheme to be adjusted between forward and
backward differencing. The method is unconditionally stable for θ ≥ (1/2), and θ = (2/3)
corresponds to a Galerkin-like treatment of the time derivative terms.

Rearranging, this relation becomes:

[(C/∆t) + θK]∆a = f − Kan (28)

where ∆a = an+1 − an. This implicit relation permits the values an+1 at the end of the next
time increment ∆t to be computed from the current values an.

The right hand side is treated just as in steady problems, since the unbalanced force vector
approach already subtracts the Kan term from f . The only difference is that the stiffness matrix
K must be multiplied by θ and the (C/∆t) term must be added; this is done when the user
sets the “time-stepping flag” in the material property portion of the input dataset (the section
following the mate keyword) to be 1 rather than 0. A macro list for a transient problem might
look like the following:

init

dt 10

disp

tang

loop 20

time

form

solv

disp 2

next

end

1 15 300.

16 30 400.

stop

The keyword init instructs the computer to read the data following the end keyword for
setting the nodal initial values. In this cases, the first degree of freedom for nodes 1 through
15 are set to 300.0, and nodes 16 through 30 are set to 400.0. A blank line is used to end
these initializing data. The keyword dt sets the time step to 10 (the units, as always, are up to
the user). The disp which follows next spools the initial values to the output file. The tang

10

command here appears outside the loop; this will save a good deal of computing time, and is
permissible if nothing in the stiffness matrix changes with time. Next, we ask for 20 time steps;
each begins with the time command, which adds ∆t to the current time. The displacements
will be spooled for output at every second time step, as indicated by the ‘2’ in column 15 of the
disp command.

2 Example Problems

The numerical algorithms outlined above have been coded in Fortran and implemented on a
number of computer systems of varying size. An implementation for the IBM-PC and compatible
family of microcomputers was accomplished with no special difficulties, although some extra
caution was needed to insure that the Fortran compiler computed array addresses beyond 64
kilobytes correctly. The PC version requires the presence of a math coprocessor and 450K of
available memory, and is accompanied by a graphics postprocessing module which requires an
EGA display system.

The PC distribution disk has a number of demonstration datasets, named demo1 through
demo6. These can be run by giving the name of the datafile to be used as input on the command
line; for instance to run demo1, simply type flow demo1. The run log will appear on the screen,
and when the job is complete the files demo1.plt and demo1.out will be stored in the current
directory. The .out file is a formatted listing of numerical values produced by the code; it can
be displayed on the terminal monitor or sent to the printer as desired. The .plt file contains
the same numerical results, but without quite so much formatting; it is intended to be read in
by a postprocessing code in order to generate graphical views of the output. Once flow demo1
has been run, the results can be viewed graphically by typing post demo1.

As inspection of the demonstration datasets will indicate, the preparation of input datasets
for finite element analysis can be a tedious and error-prone chore. For any but the most simple
problems, it is essential that a computerized “preprocessor” be employed to generate the dataset.
Discussion of available preprocessors is beyond the scope of this document, but the reader
should be aware that several such codes are available both commercially and from finite element
literature sources. For instance, Reference [14] contains a very useful Fortran listing which can
be used to generate the lists of nodal coordinates and element connectivities.

A brief description of these demonstration problems follows:

2.1 demo1 – simple pressure/drag flow.

Here we treat a standard textbook problem in fluid mechanics, that of an incompressible viscous
fluid constrained between two boundaries of infinite lateral extent. Although idealized, this
problem is often used to model the down-channel flow in a melt extruder [4]. A positive pressure
gradient is applied in the x-direction, and the upper boundary surface at y = H is displaced
to the right at a velocity of u(H) = U . The y-velocities are all set to zero; the problem
is underconstrained otherwise. This simple problem was solved by a 10x3 mesh of 4-node
quadrilateral elements, as shown in Figure 1. Numerical parameters such as η and H are set to
unity in this example problem. When the problem is linear, numerical results for other problem
parameters can be obtained by suitable scaling; nondimensionalized units are used in Figure 1
to emphasize this point.

The user will find it instructive to compare the resulting velocities u(y) with the theoretical
values. In this case the theoretical solution requires only the x-direction momentum equation;

11

� �

� � � � � �

Figure 1: Simulation of drag/pressure plane flow.

after dropping terms which are identically zero, this becomes:

d2u 1 ∆p
=

dy2 η ∆x
(29)

Integrating this twice, and applying the boundary conditions u(0) = 0, u(H) = U , the velocity
is given as

u(y) =
1 ∆p

Hy − y 2 + U
y

(30)
2η ∆x H

The first term above is the “Poiseuille” parabolic distribution produced by the applied pressure;
the second term is the linear “Couette” distribution caused by the drag. Figure 2 shows the
finite-element prediction of this velocity profile for two cases: a Newtonian fluid (power-law
exponent = 1) and a shear-thinning fluid (power-law exponent = 0.3). The shear-thinning
analysis is nonlinear, and was accomplished by Newton-Raphson iteration as described earlier;
the dataset for this case is named demo1a on the PC distribution disk.

Figure 2: Finite element prediction of plane flow velocity profile.

12

� ��

2.2 demo2 – Couette flow with heat generation

This problem uses the same grid as demo1, and illustrates some additional capability of the flow
code. Here no pressure gradient is imposed (this is then drag or “Couette” flow only), but we
also compute the temperatures resulting from internal viscous dissipation. Note that the degree
of freedom number for temperature is set at 3, and the code is looped twice. (After the first loop
the velocities are known, but another pass is needed so the heat transfer equations are given the
correct velocities from which the dissipation can be computed.)

The shear rate in this case is just γ̇ = (∂u/∂y) = U/H. The associated stress is τ = ηγ̇ =
η(U/H), and the thermal dissipation is then Q = τ γ̇ = η(U/H)2 . The energy equation then
becomes:

d2T η U
�2

= −
dy2 k H

(31)

This can be solved easily by integrating twice and imposing fixed thermal boundary conditions
at the top and bottom of the flow channel; here we have set T (0) = T (H) = 0. The temperature
profile predicted by the code is shown in Figure 3; the reader should compare this with the
theoretical values.

Figure 3: Finite element simulation of plane Couette flow with thermal dissipation and conduc-
tive heat transfer. (f) – fixed temperature condition; (c) – convective boundary condition.

The specific numerical values, of course, reflect the values used as input parameters; the
unit values used in this simulation give a “Brinkman Number” Br = (QH2)/(kT) of unity,
if the characteristic temperature in this definition is also taken as unity. This dimensionless
parameter, which represents the relative importance of internal heat gneration rate to conductive
heat transfer rate, can be used in scaling the numerical results for other problem parameters.

Figure 3 also shows the temperature profile which is obtained if the upper boundary exhibits
a convective rather than fixed condition; the dataset for this run is demo2a, which makes use
of the convective boundary element discussed earlier. The convective heat transfer coefficient h
was set to unity; this corresponds to a “Nusselt Number” Nu = (hH/k) = 1.

2.3 demo3 – 4:1 entry flow

Here flow passes from a reservoir into a capillary with a 4:1 constriction ratio. The mesh takes
advantage of symmetry, so the lower boundary is actually the centerline of a plane capillary

13

entry flow. This is a moderately large problem, one often used to assess code performance by
the fluid modeling community. However, the mesh is too coarse to resolve certain fine features of
the flow, such as a recirculation which appears in the stagnation region of the reservoir. A fully
developed parabolic flow profile is imposed at the left hand boundary, and the streamfunction
is set to zero along the centerline. The code loops twice to compute both the temperatures and
the streamfunction (note the streamfunction degree of freedom is set to 4).

In this dataset, convective heat transfer is neglected and only conductive thermal transport
is considered (the temperature convection integration order is set to 0 in demo3). The relative
importance of convective versus conductive heat transfer is indicated by the “Peclet Number,”
defined as Pe = ρcUH/k, where U and H are a characteristic velocity and length for the system.
(The upstream centerline velocity and the reservoir half-height are convenient choices, and were
both taken as unity in demo3). The Peclet number is usually large for polymer processing
operations due to the low thermal conductivity of those materials. For higher Peclet numbers,
try setting the temperature convection order to 1 (for streamline upwinding) or 2 (for Galerkin
treatment). Reference [9] contains a further discussion of the finite element analysis of this
problem. Figure 4 shows the graphical display from post for the mesh and primary variables as
computed by the code.

Figure 4: Finite element simulation of 4:1 entry flow with coupled conductive heat transfer.

When the macro stre is included in the input dataset, the code loops again over the elements
and computes auxiliary variables which may be related to the gradients of the primary variables.
These can then be contoured by post, using the stress option. Stress components 1 through
5 refer to vorticity ω, pressure p, and the stresses τxx, τyy , τxy . Some of these, as generated by
post demo3, are displayed in Figure 5.

The contours of Figure 5 illustrate that the pressure drop occurs largely in the capillary,
where it is fairly uniform away from the entrance and exit regions. It should be noted that
penalty flow formulations are sometimes afflicted with an anomolous “checkerboarding” of the
computed pressures, in which the pressures oscillate from element to element. The reader is
referred to Hughes’ paper [11] for a further discussion of this numerical artifact, and how it can
be avoided or smoothed by suitable postprocessing.

14

Figure 5: Stresses and associated auxiliary variables in 4:1 entry flow

2.4 demo4 – transient heat conduction

This is another textbook problem, the famous and challenging differential equation (∂T/∂x) =
α(∂2 T/∂x2). We apply it here to a one-dimensional transient heat conduction problem, so
α = (k/ρc) is the thermal diffusivity. However, this analysis is identical to transient species
diffusion or flow near a suddenly accelerated flat plate, if α is suitably interpreted. A single
strip of quadrilateral elements is placed along the x-axis, in which all temperatures are initially
set to zero. The right-hand boundary is then subjected to a step increase in temperature
(T (H, t) = TH), and we want to compute the transient temperature variation T (x, t). This is
done by setting the time-stepping flag to 1 and looping the code repeatedly as described earlier.

The temperature profiles along the x-axis at various times are shown in Figure 6. These √
values should be compared with the theoretical solution T = erfc[(1−x)/2 αt]. Some numerical
oscillations are noted at the heated boundary at short times due to the inability of the rather
coarse mesh and time increment to capture the thermal boundary layer which forms there.
However, this can easily be avoided if desired by using a finer mesh in that region, and also by
stepping with shorter time increments initially.

2.5 demo5 – 10x10 grid, convection check Pe = 106

This problem illustrates the handling of convective thermal transport, and is taken from Refer-
ence [12]. As shown in Figure 7, a uniform velocity is imposed on a square mesh in a direction
skewed to the coordinate axes, and two different temperatures are imposed along the lefthand
and bottom boundaries. Normalized temperatures are used as shown, and the lower-left-hand
corner is a compromise at T = 0.5. The temperature of the left boundary should be carried
along the skew direction by the flow. Observation of the temperature contours, in particular the

15

Figure 6: Temperature profiles in transient heat conduction.

lack of spreading along the stream direction, shows that streamline upwinding is able to model
this difficult problem quite well.

Figure 7: Temperature contours in convection-dominated flow

2.6 demo6 – thermally-driven buoyancy flow

This problem uses the same 10x10 mesh of demo5, modified to solve another problem with the
same geometry. Here the vertical boundaries are held at fixed temperatures, the left hotter than
the right, while the horizontal boundaries are left unconstrained. A linear temperature gradient
is thus set up between the left and right boundaries, as can be seen by contouring the third
degree of freedom in post. A body force term is present in the momentum equation, giving a
vertical force of ρα(T − Ta), where here α is a coefficient of volumetric thermal expansion. The
cooler and denser fluid at the right will tend to move down and displace the warm fluid at the
left, setting up a clockwise circulation as seen in the streamline contour plot of Figure 8. The
code loops three times, finding the temperatures in the first pass, the velocities which depend

16

3

on the temperatures in the second pass, and the streamlines which depend on the velocities in
the third pass.

Figure 8: Streamlines for thermally-driven buoyancy flow.

References

[1] May, C.A., ed., Chemorheology of Thermosetting Polymers, American Chemical Society
Symposium Series, No. 227, Washington, D.C., 1983.

[2] Ryan, M.E., “Rheological and Heat Transfer Considerations for the Processing of Reactive
Systems,” Polymer Engineering and Science, Vol. 24, pp. 698-706, June 1984.

[3] Bird, R.B., W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, John Wiley &
Sons, New York, 1960.

[4] Middleman, S., Fundamentals of Polymer Processing, McGraw-Hill Co., New York, 1977.
[5] Zienkiewicz, O.C., The Finite Element Method, McGraw-Hill Co., London, 1977.
[6] Baker, A.J., Finite Element Computational Fluid Mechanics, McGraw-Hill Co., New

York, 1983.
[7] Roylance, D.K., “Use of ‘Penalty’ Finite Elements in Analysis of Polymer Melt Process-

ing,” Polymer Engineering and Science, vol. 20, pp. 1029-1034, 1980.
[8] Douglas, C. and D. Roylance, “Finite Element Analysis of Nonisothermal Polymer Pro-

cessing Operations,” Finite Element Flow Analysis, Elsevier North-Holland Inc., 1982. (Pro-
ceedings of the Fourth International Symposium on Finite Element Methods in Flow Problems,
Tokyo, July 1982.)

[9] Roylance, D.K., “Finite Element Modeling of Nonisothermal Polymer Flows,” Computer
Applications in Applied Polymer Science, American Chemical Society Symposium Series, No.
197, pp. 265 - 276, 1982.

[10] Douglas, C. and D. Roylance, “Chemorheology of Reactive Systems: Finite Element
Analysis,” Chemorheology of Thermosetting Polymers,” ACS Symposium Series, No. 227, pp.
251-262, 1983.

[11] Hughes, T.R.J., W.L. Liu, and A. Brooks, “Finite Element Analysis of Incompressible
Viscous Flows by the Penalty Function Formulation,” Journal of Computational Physics, Vol.
30, pp. 1-60, 1979.

17

[12] Hughes, T.R.J. and A. Brooks, “A Multidimensional Upwind Scheme With No Cross
-
wind Diffusion,” Finite Element Methods in Convection Dominated Flows, American Society of

Mechanical Engineers, pp. 19-36, 1979.

[13] Aylward, L., Douglas, C., and Roylance, D. “A Transient Finite Element Model for

Pultrusion Processing,” Polymer Process Engineering, vol. 3, pp. 247-261, 1985.

[14] Segerland, L.J., Applied Finite Element Analysis, John Wiley & Sons, New York, 1976.

18

