

Juejun (JJ) Hu

# After-class reading list

- Fundamentals of Inorganic Glasses
  - □ Ch. 14, Ch. 16
- Introduction to Glass Science and Technology
  - 🗆 Ch. 8
- 3.024 band gap, band diagram, engineering conductivity

#### **Basics of electrical conduction**

Electrical conductivity

$$\sigma = \sum_{i} n_i Z_i e \mu_i$$

$$\boldsymbol{v}_i = \boldsymbol{\mu}_i \boldsymbol{E}$$

Einstein relation

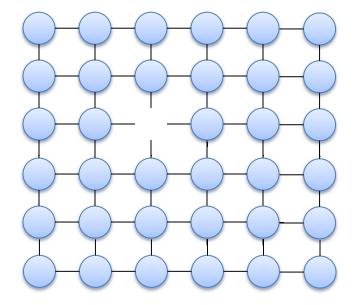
$$D_i = \frac{\mu_i k_B T}{Z_i e}$$

$$\Rightarrow \sigma = \frac{1}{k_B T} \cdot \sum_{i} (Z_i e)^2 n_i D_i$$

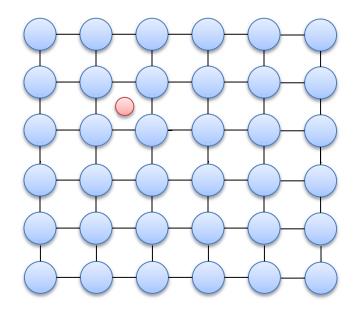
- $\sigma$ : electrical conductivity
- n : charge carrier density
- Z: charge number
- e : elementary charge
- $\mu$  : carrier mobility
- D : diffusion coefficient
- v: carrier drift velocity
- E : applied electric field

Both ions and electrons contribute to electrical conductivity in glasses

#### Ionic conduction in crystalline materials



#### Vacancy mechanism



#### Interstitial mechanism

#### Ionic conduction pathway in amorphous solids

Comparison of Li transport pathways figure removed due to copyright restrictions. See: Figure 8: Adams, S. and R. Prasada Rao. "Transport Pathways for Mobile Ions in Disordered Solids from the Analysis of Energy-scaled Bond-valence Mismatch Landscapes." Phys. Chem. Chem Phys. 11 (2009): 3210-3216.

- There are low energy "sites" where ions preferentially locate
- Ionic conduction results from ion transfer between these sites
- Ionic conduction is thermally activated

2-D slices of regions with Li site energies below a threshold value in Li<sub>2</sub>O-SiO<sub>2</sub> glasses

Phys. Chem. Chem. Phys. 11, 3210 (2009)

 Assuming completely random hops, the average total distance an ion moves after *M* hops in 1-D is:

 $r = d \cdot \sqrt{M}$ 

Average diffusion distance:

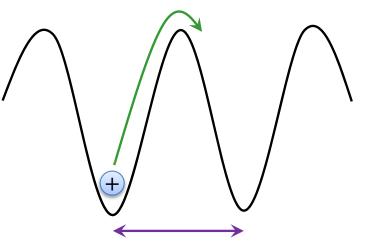
$$r = \sqrt{2\tau D} \quad (1-D)$$

$$r = \sqrt{6\tau D} \quad (3-D)$$

$$\Rightarrow D = \frac{1}{2}vd^2 \quad (1-D)$$

$$\Rightarrow D = \frac{1}{6}vd^2 \quad (3-D)$$

Electric field E = 0



Average spacing between adjacent sites: *d* 

For correlated hops:

$$D = \frac{1}{6} f v d^2 \qquad 0 < f < 1$$

Ion hopping frequency: v

- Attempt (vibration) frequency:  $v_0$
- Frequency of successful hops (ion hopping frequency):

$$v = v_0 \exp\left(-\frac{\Delta E_a}{k_B T}\right)$$
  
 $\Rightarrow D = \frac{1}{6} f v_0 d^2 \exp\left(-\frac{\Delta E_a}{k_B T}\right)$ 

Electric field 
$$E = 0$$

Barrier height  $\Delta E_a$ 

Equal probability of hopping along all directions: zero net current

- Energy difference between adjacent sites: ZeEd
- Hopping frequency  $\rightarrow$  :

 $v_{\rightarrow} = \frac{1}{2} v_0 \exp\left(-\frac{\Delta E_a}{k_B T}\right)$ 

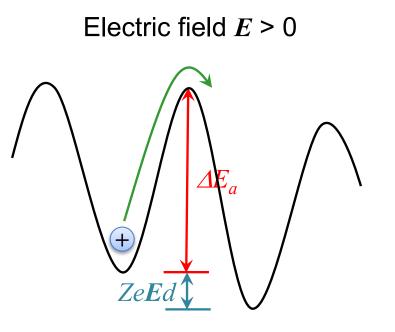
• Hopping frequency  $\leftarrow$  :

$$v_{\leftarrow} = \frac{1}{2} v_0 \exp\left(-\frac{\Delta E_a + ZeEd}{k_B T}\right)$$

Net ion drift velocity:

1

$$\mathbf{v} = \left(v_{\rightarrow} - v_{\leftarrow}\right) \cdot d = \frac{v_0 Z e \mathbf{E} d^2}{2k_B T} \cdot \exp\left(-\frac{\Delta E_a}{k_B T}\right)$$



Ion mobility

$$\mu = \frac{v_0 Z e d^2}{2k_B T} \cdot \exp\left(-\frac{\Delta E_a}{k_B T}\right)$$

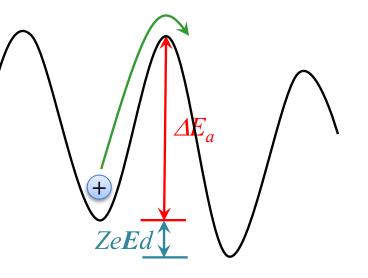
Electrical conductivity (1-D, random hop)

$$\sigma = \frac{nv_0 \left(Zed\right)^2}{2k_B T} \cdot \exp\left(-\frac{\Delta E_a}{k_B T}\right)$$

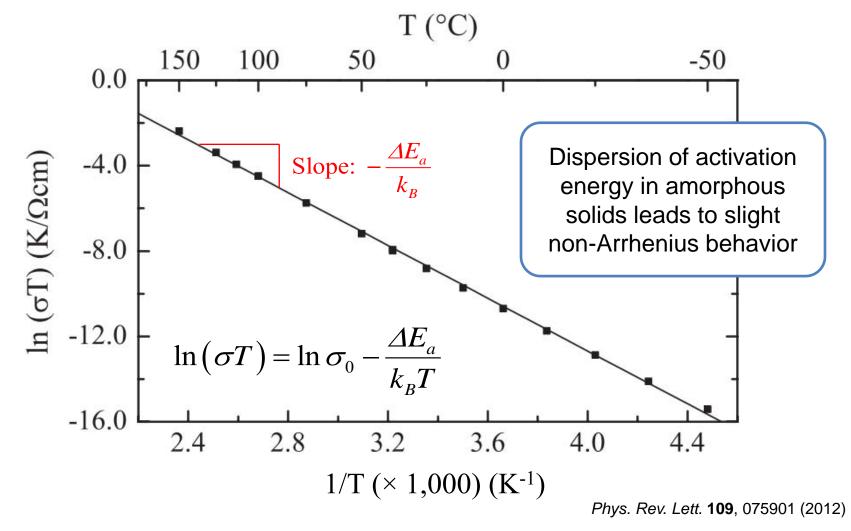
Einstein relation (3-D, correlated hops)

$$\sigma = \frac{1}{k_B T} \left( Ze \right)^2 nD = \frac{fnv_0 \left( Zed \right)^2}{6k_B T} \cdot \exp\left( -\frac{\Delta E_a}{k_B T} \right) = \frac{\sigma_0}{T} \exp\left( -\frac{\Delta E_a}{k_B T} \right)$$

Electric field E > 0



Temperature dependence of ionic conductivity



10

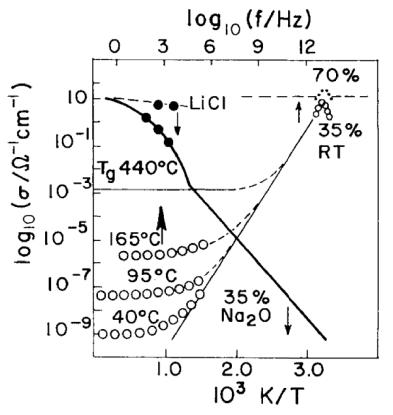
#### Theoretical ionic conductivity limit in glass

$$\sigma = \frac{\sigma_0}{T} \cdot \exp\left(-\frac{\Delta E_a}{k_B T}\right) \qquad \sigma_0 = \frac{fnv_0 \left(Zed\right)^2}{6k_B}$$

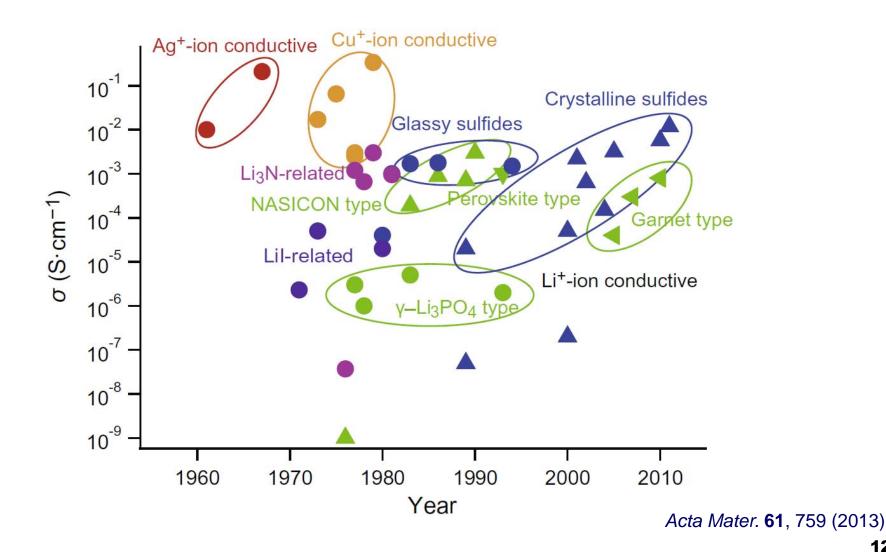
• When 
$$T \to \infty$$
,  $\sigma \to \sigma_0/T$ 

 Extrapolation of the Arrhenius plot agrees with infrared spectroscopic measurements in ionic liquids (molten salts)

Solid State lonics **18&19**, 72 (1986) Annu. Rev. Phys. Chem. **43**, 693 (1992) Note that  $\sigma_0$  has a unit of  $\Omega$ ·cm/K

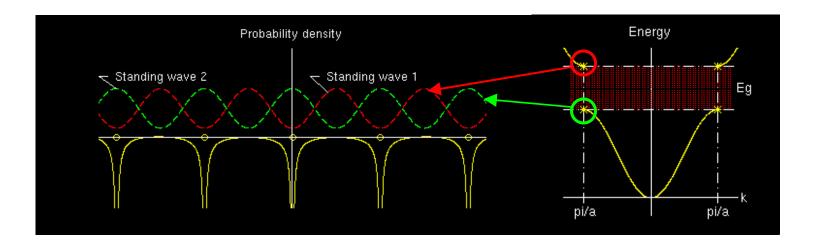


#### Fast ion conductors / superionic conductors



12

#### Band structures in defect-free crystalline solids



- All electronic states are labeled with real Bloch wave vectors k signaling translational symmetry
- All electronic states are extended states
- No extended states exist in the band gap

#### Band structures in defect-free crystalline solids

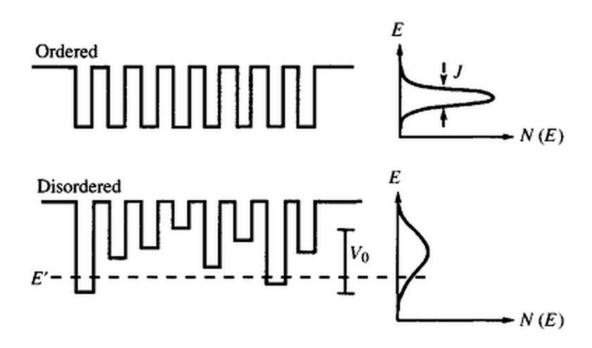
Figure removed due to copyright restrictions. See Figure 12, Chapter 7: Kittel, Charles. *Introduction to Solid State Physics*. Wiley, 2005.

In the band gap, wave equation solutions have complex wave vectors k

Kittel, Introduction to Solid State Physics, Ch. 7

#### Anderson localization in disordered systems

• Localization criterion:  $V_0 / J > 3$ 



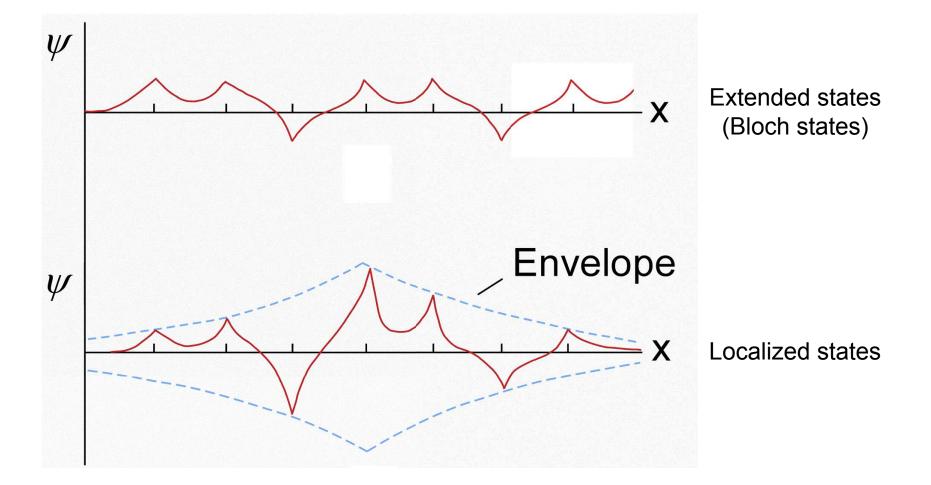


P. W. Anderson

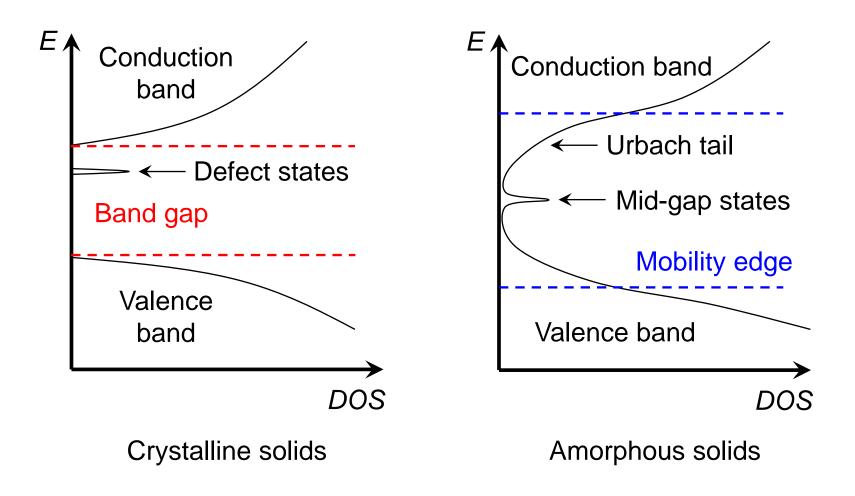
Image is in the public domain. Source: Wikimedia Commons.

Disorder leads to (electron, photon, etc.) wave function localization

#### Anderson localization in disordered systems



# Density of states (DOS) in crystalline and amorphous solids



#### Extended state conduction

Extended state conductivity:

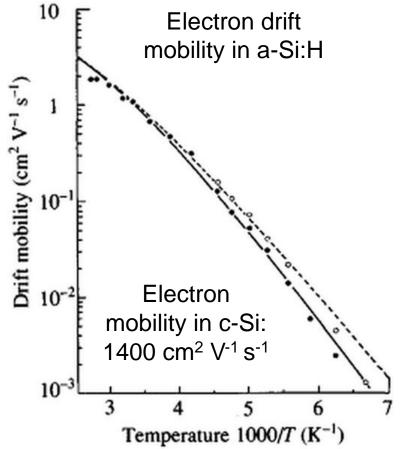
 $\sigma_{ex} = ne\mu_{ex}$  $\mu_{ex} = \left(1 - f_{trap}\right)\mu_0$ 

 $\mu_0$  : free mobility

 $f_{trap}$ : fraction of time in trap states

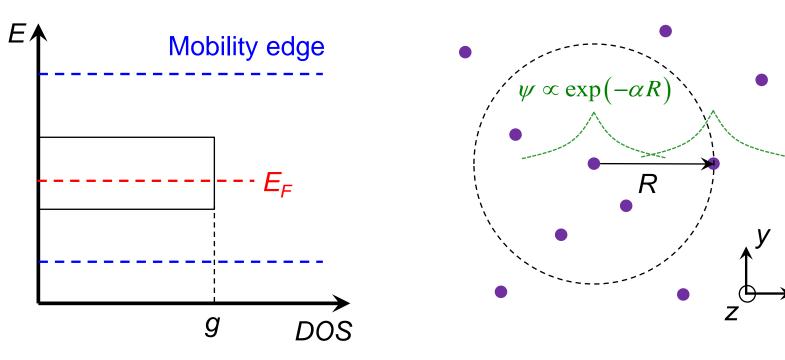
- Drift mobility  $\mu_{ex}$  increases with temperature  $(T \rightarrow \infty, f_{trap} \rightarrow 0)$
- Extended state conductivity follows Arrhenius dependence

R. Street, Hydrogenated Amorphous Silicon, Ch. 7



### Hopping conduction via localized states

- Fixed range hopping: hopping between nearest neighbors
   Hopping between dopant atoms at low temperature
- Variable range hopping (VRH)
  - □ Hopping between localized states near  $E_F$



Х

## Variable range hopping

• Hopping probability 
$$P \propto \exp\left(-2\alpha R - \frac{\Delta E}{k_B T}\right) \propto \sigma_{VRH}$$

• Within distance R, the average minimal energy difference  $\Delta E$  is:  $\Delta E = \frac{3}{4\pi R^3 g}$ 

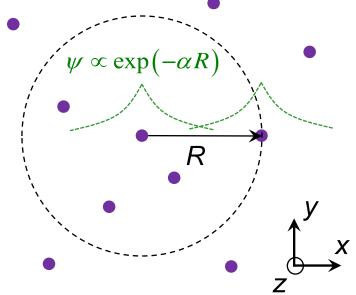
 $\frac{1}{4}$ 

Optimal hopping distance:

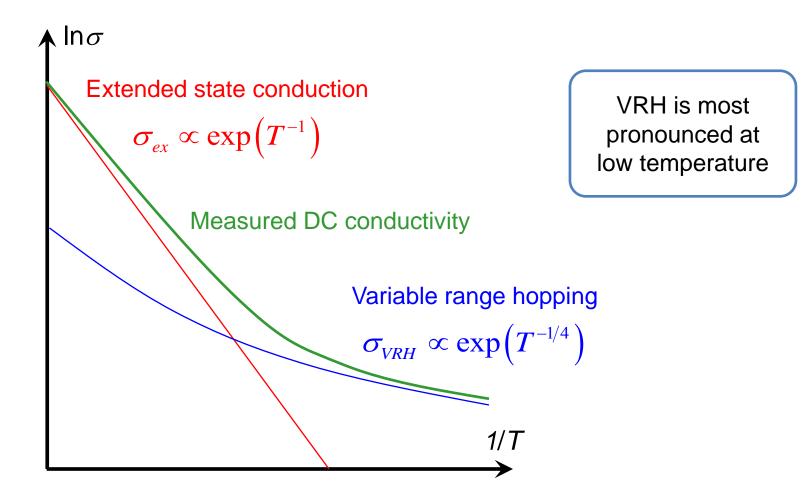
$$R = \left(8\pi g \alpha k_{B} T/9\right)^{-1/4}$$

$$\left(2\alpha R + \frac{\Delta E}{k_{B} T}\right)_{\min} = 4\alpha^{\frac{3}{4}} \left(\frac{2}{9\pi g k_{B} T}\right)$$

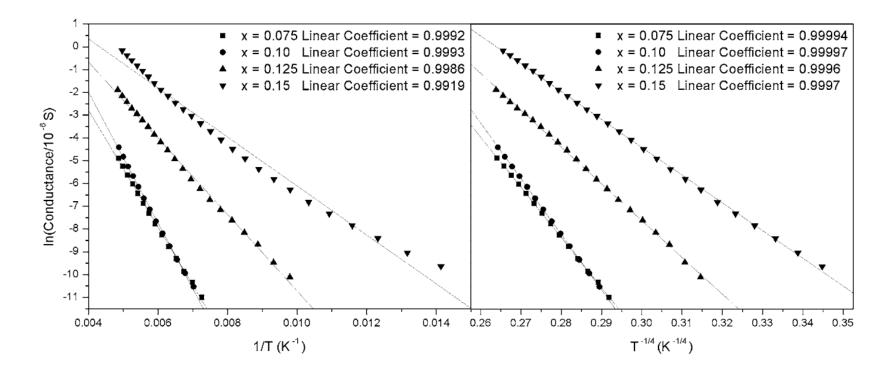
$$\Rightarrow \sigma_{VRH} \propto \exp\left(T^{-1/4}\right)$$



#### DC conductivity in amorphous semiconductors



## VRH in As-Se-Te-Cu glass



Near room temperature, mixed ionic and extended state conduction

At low temperature, variable range hopping dominates

*J. Appl. Phys.* **101**, 063520 (2007)

## Summary

#### Basics of electrical transport

Conductivity: scalar sum of ionic and electronic contributions

$$\sigma = \sum_{i} n_i Z_i e \mu_i \qquad \mathbf{v}_i = \mu_i \mathbf{E}$$

Einstein relation

$$D_i = \frac{\mu_i k_B T}{Z_i e} \implies \sigma = \frac{1}{k_B T} \cdot \sum_i (Z_i e)^2 n_i D_i$$

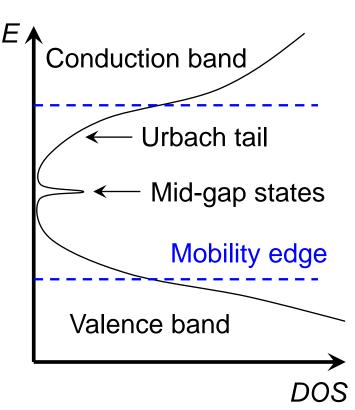
- Ionic conductivity
  - Occurs through ion hopping between different preferred "sites"
  - Thermally activated process and non-Arrhenius behavior

$$\sigma = \frac{\sigma_0}{T} \cdot \exp\left(-\frac{\Delta E_a}{k_B T}\right) \qquad \sigma_0 = \frac{fnv_0 \left(Zed\right)^2}{6k_B}$$

# Summary

Electronic structure of amorphous semiconductors

- Anderson localization: extended vs. localized states
- Density of states
- Mobility edge
- Band tail and mid-gap states
- Extended state conduction
  - Free vs. drift mobility
  - Thermally activated process
- Localized state conduction
  - □ Fixed vs. variable range hopping
  - **D** Mott's  $T^{-1/4}$  law of VRH



MIT OpenCourseWare http://ocw.mit.edu

3.071 Amorphous Materials Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.