That Fick's 2nd Law problem from class today.

THE REAL PROPERTY AND ADDRESS OF THE REAL PROPERTY ADDR

Case hardening steel pipes © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

high-

carbon

steel

lowcarbon steel

Images of carbon steel © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Question: if the low carbon steel has a carbon content of 0.25 wt% and I have a source of 1.2 wt% carbon at the surface, how long should I expose the surface at T=900^oC such that at 0.5 mm into the surface the carbon content is 0.8 wt%?

Non Steady-State Diffusion C=C(x,t)

Fick's Second Law

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

$$\frac{C(x,t)-C_o}{C_s-C_o} = 1 - \operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right)$$

Initially uniform carbon concentration = 0.25 wt%Concentration @ surface = 1.2 wt%T=950 Celsius.

How much time is needed to get a carbon content of 0.80 wt% at a position 0.5 mm below the surface?

D for carbon in iron at this temperature =1.6 x 10^{-11} m²/s

$$\frac{C_x - C_o}{C_s - C_o} = \frac{0.80 - 0.25}{1.20 - 0.25} = 1 - erf \frac{(5 \times 10^{-4} m)}{2\sqrt{(1.6 \times 10^{-11} m^2/s)(t)}}$$

can use table or can use erf trick: if $z \le 0.65$ then erf(z) ~z getting the erf() term onto one side, we have: $0.42 = erf() \longrightarrow 0.0005/[2*sqrt(1.6 \times 10^{-11}*t)] = 0.42$ solve for t \longrightarrow t=~7 hours

TABLE	5.1	Tabulation	of	Error	Function	Values
			~ .			

z	erf(z)	z	erf(z)	z	erf(z)
0	0	0.55	0.5633	1.3	0.9340
0.025	0.0282	0.60	0.6039	1.4	0.9523
0.05	0.0564	0.65	.0.6420	1.5	0.9661
0.10	0.1125	0.70	0.6778	1.6	0.9763
0.15	0.1680	0.75	0.7112	1.7	0.9838
0.20	0.2227	0.80	0.7421	1.8	0.9891
0.25	0.2763	0.85	0.7707	1.9	0.9928
0.30	0.3286	0.90	0.7970	2.0	0.9953
0.35	0.3794	0.95	0.8209	2.2	0.9981
0.40	0.4284	1.0	0.8427	2.4	0.9993
0.45	0.4755	1.1	0.8802	2.6	0.9998
0.50	0.5205	1.2	0.9103	2.8	0.9999

Error function table © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For information, see https://ocw.mit.edu/fairuse.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

3.091 Introduction to Solid-State Chemistry Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.