Extra Notes on Glass

The silicate units stay intact but can rotate/distort relative to one another.

There are different crystal phases of SiO₂ that depend on temperature...

low temperature

high temperature

...but one doesn't easily get a crystal

Depends on: 1) T and 2) cooling

instead an amorphous (glass) can form

not crystal

crystal

In class I made the analogy to musical chairs: silicates = people, chairs = xtal lattice sites

- Speed around chairs: high mobility gets to lattice site faster, high 1/ mobility (viscosity), gets there slower —> leads to glass
- 2) arrangement of chairs: xtal
 complexity : more complex —> leads to glass
- 3) how fast the music stops: cooling rate : faster rate —> less chance to find a chair —> leads to glass

When does glass form?

In class I used this figure to compare two different glasses, a and b.
We first talked about the impact of cooling rate: faster rate —> more disorder, higher molar volume (b)
slower rate —> some time for atoms to try for crystallinity —> lower molar volume (a)

Volume, Enthalpy

- This is the example question I gave in class today (it's from an old Exam 3 question):
- Two glass forming liquids of identical composition are cooled at the same rate to a temperature T_1 , where $T_1 > T_m$. One glass is then cooled more quickly than the other. Which graph represents the molar volume vs. T curve of the two glasses?
 - The answer is (a) since it has T1 correctly greater than Tm (past Tg1 and Tg2), and it has the two slopes of the glasses the same.

- We used cooling rate as an example for how to engineer the mechanical properties of glass.
- In a process called tempering, the outside layer is cooled more rapidly than the inside, leading to a "desire" for the inside to have a smaller volume (slower cooling rate).
- This can be understood from the curves drawn on the previous slides, with for example glass (b) being the surface layer and (a) being the inside.
- The volume change between surface and core leads to (sometimes huge) compressive stress which makes the glass stronger.

		bottles/ windows	Bakeware/ lab glass	Optical	High Temp	Ancient Rome
Silica	SiO ₂	73.6%	80.0%	35.0%	96.5%	67.0%
Soda	Na ₂ O	16.0	4			18.0
Lime	CaO	5.2				8.0
Potash	K ₂ O	0.6	0.4	7.2		1.0
Magnesia	MgO	3.6				1.0
Alumina	AI_2O_3	1.0	2.0		0.5	2.5
Iron Oxide	Fe ₂ O ₃					0.5
Glass can be widely engineered, by changing the cooling rate as discussed above or by adding chemistry (a "modifier"), that provides O ²⁻ .						

Note something in common with all glass modifiers: gives O^{2-} For example: CaO —> Ca(2+) + O(2-) Na2O —> 2Na(1+) + O(2-) Al2O3 —> 2Al(3+) + 3O(2-)

O²⁻ attacks the Si-O-Si bond and breaks it. This its called chain scission since the chain is broken (shorter pasta)

Stock image of spaghetti © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For information, see <u>https://ocw.mit.edu/fairuse</u>.

Chemical modification of the silicate network means that we can get the different glass curves in TWO DIFFERENT ways:

- same material cooled at different rates. Faster cooling would give (b), slower (a) — this is what we've discussed
- 2) cooling at the same rate but different modifiers. e.g, (b) could be SiO2 with 5% PbO and (a) SiO2 with 10% PbO —> more cutting spaghetti = less viscous so can find better packing leading to lower volume/mole

Chemically strengthened glass: We also discussed ion exchange as a way to make glass stronger —> in this case bigger K+ ions substitute for Na+ that were there from a modifier, and push the glass network in between making it have the same compressive stress as tempering.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

3.091 Introduction to Solid-State Chemistry Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.