Do yourself a solid.
Practice Problems J: Kinetics \& reactions
The following problems sets are compiled from B. A. Averill and P. Eldredge, General Chemistry: Principles, Patterns, and Applications. License: CC BY-NC-SA. Source: Open Textbook Library.

Reading: Averill 14.1-14.5; 13.1-13.3; 17.1; 17.4

1. Rate laws and reaction order

Averill Chapter 14, Section 3, Numerical Problem 1

Iodide reduces $\mathrm{Fe}(\mathrm{III})$ according to the following reaction:

$$
2 F e_{a q}^{3+}+2 I_{a q}^{-} \rightarrow 2 F e_{a q}^{2+}+2 I_{a q}
$$

Experimentally, it was found that doubling the concentration of Fe (III) doubled the reaction rate, and doubling the iodide concentration increased the reaction rate by a factor of 4 . What is the reaction order with respect to each species? What is the overall rate law? What is the overall reaction order?

2. Rate law and reaction order from experimental data

Averill Chapter 14, Section 3, Numerical Problem 2

Benzoyl peroxide is a medication used to treat acne. Its rate of thermal decomposition at several concentrations was determined experimentally, and the data were tabulated as follows:

Experiment	[Benzoyl Peroxide] $]_{0}(\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	1.00	$2.22 \times 10^{-} 4$
2	0.70	1.64×10^{-4}
3	0.50	1.12×10^{04}
4	0.25	0.59×10^{-4}

What is the reaction order with respect to benzoyl peroxide? What is the rate law for this reaction?

3. Determine whether it's a first-order process

Averill Chapter 14, Section 5, Numerical Problem 1 Half-lives for the reaction A + B C were calculated at three values of $[\mathrm{A}]_{0}$, and $[\mathrm{B}]$ was the same in all cases. The data are listed in the following table: Does this

$[\mathrm{A}]_{0}(\mathrm{M})$	$\mathrm{t}_{1 / 2}(\mathrm{~s})$
0.50	420
0.75	280
1.0	210

reaction follow first-order kinetics? On what do you base your answer?

4. Rate constant and reaction rate at different temperatures

Averill Chapter 14, Section 7, Numerical Problem 4 An enzyme-catalyzed reaction has an activation energy of $15 \mathrm{kcal} / \mathrm{mol}$. How would the value of the rate constant differ between $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$? If the enzyme reduced the E_{a} from $25 \mathrm{kcal} / \mathrm{mol}$ to $15 \mathrm{kcal} / \mathrm{mol}$, by what factor has the enzyme increased the reaction rate at each temperature?

5. Activation energy from experimental data

Averill Chapter 14, Section 7, Numerical Problem 5

The data in the following table are the rate constants as a function of temperature for the dimerization of 1,3 -butadiene. What is the activation energy for this reaction?

$\mathrm{T}(\mathrm{K})$	$\mathrm{k}\left(\mathrm{M}^{-1 *} \mathrm{~min}^{-1}\right)$
529	1.4
560	3.7
600	25
645	82

6. Impact of Cl on atmospheric ozone depletion

Averill Chapter 14, Section 9, Numerical Problem 11
At higher altitudes ozone is converted to O_{2} by the reaction $\mathrm{O}+\mathrm{O}_{3} \rightarrow 2 \mathrm{O}_{2}$, with a rate contant at 220 K of $6.8 \times 10^{-16} \mathrm{~cm}^{3} *$ molecule ${ }^{-1} * \mathrm{~s}^{-1}$.
a) What is the overall reaction order?
b) What is E_{a} for this reaction if $\mathrm{A}=8 \times 10^{-12} \mathrm{~cm}^{3 *}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$?
 $\mathrm{cm}^{3 *}$ molecule ${ }^{-1 *^{-1}}$.
c) Calculate E_{a} for the depletion of ozone in the presence of Cl .
d) Show an energy-level diagram for these two processes, clearly labeling reactants, products, and activation energies.
e) If you were an environmental scientist using these data to explain the effects of Cl on ozone concentration, what would be your conclusions?

7. Reaction rate, half life, and decomposition time

The decomposition of hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, can be represented by the following reaction:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

The table below reports data taken at room temperature (300 K).

Table 1: Table 1. Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$ at 300 K .

$\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ (mol/liter)	time (seconds)
2.32	0
2.01	200
1.72	400
1.49	600
0.98	1200
0.62	1800
0.25	3000

a) Show that the reaction is first order
b) Calculate the value of the half-life of this reaction
c) Suppose that the initial concentation of $\mathrm{H}_{2} \mathrm{O}_{2}$ were 3.5 M . How long would it take at 300 K to reduce the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ to 25% of its initial value?

MIT OpenCourseWare
https://ocw.mit.edu/

3.091 Introduction to Solid-State Chemistry

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

