3.

91

Do yourself a solid.
3.091: Introduction to Solid State Chemistry Maddie Sutula, Fall 2018 Recitation 24

1 pH and pOH

The concentration of ions in solution can be quite high- and can differ from solution to solution by many orders of magnitude. For this reason, it is useful to refer to a logarithmic scale. We will use an operator p defined to be the negative \log (base 10) of the value it precedes: for example, $\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$.

The pH of a solution is a measure of how acidic it is: a pH of 7 indicates the solution is neutral, while lower values are acidic and higher values are basic. The compliment to pH is pOH , a measure of the concentration of hydroxide ions: $\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]$. A high pOH corresponds to an acidic solution, while a low pOH indicates a basic solution. pH and pOH are related as

$$
p H+p O H=14
$$

Example: The K_{a} for nitrous acid, HNO_{2}, is 4.0×10^{-4}. Determine the pH and pOH of 0.1 M nitrous acid.
First, let's write an expression for the dissociation of nitrous acid:

$$
\mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(a q)
$$

Then, we can write an expression for the acid dissociation constant:

$$
K_{a}=\frac{\left[N O_{2}^{-}\right]\left[H_{3} O^{+}\right]}{\left[H N O_{2}\right]}
$$

To find the pH , we need to determine the concentration of H^{+}ion (equivalently $\mathrm{H}_{3} \mathrm{O}^{+}$). The initial concentration of nitrous acid is 0.1 M : we can set up an ICE table to solve for the final concentrations:

	$\left[\mathrm{HNO}_{2}\right]$	$\left[\mathrm{NO}_{2}^{-}\right]$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Initial	0.1	0 M	0 M
Change	$-x \mathrm{M}$	$+x \mathrm{M}$	$+x \mathrm{M}$
Final	$0.1-x \mathrm{M}$	$x \mathrm{M}$	$x \mathrm{M}$

Plugging in the final values to the expression for K_{a}, we can solve for x to find the concentration of hydrogen ions:

$$
\begin{aligned}
& K_{a}=\frac{\left[\mathrm{NO}_{2}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HNO}_{2}\right]}=\frac{x^{2}}{0.1-x}=4.0 \times 10^{-4} \\
& x^{2}=4.0 \times 10^{-5}-x\left(4.0 \times 10^{-4}\right) \\
& x^{2}+x\left(4.0 \times 10^{-4}\right)-4.0 \times 10^{-5}=0 \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=x \approx 0.006}
\end{aligned}
$$

Finally, we can solve for pH :

$$
p H=-\log \left[H^{+}\right]=-\log \left[H_{3} O^{+}\right]=-\log (0.006)=2.21
$$

The value of pOH follows using the relation that $\mathrm{pH}+\mathrm{pOH}=14$:

$$
p O H=14-p H=11.79
$$

3.

91

Do yourself a solid.
3.091: Introduction to Solid State Chemistry Maddie Sutula, Fall 2018

Recitation 24

Example: What is the pH of 0.04 M HI , which is a strong acid?
The key phrase to solving this problem is 'strong acid.' When we have a strong acid, we don't need an acid dissociation constant because we know it fully dissociates! Here, the concentration of hydrogen ion simply equals the initial concentration of acid:

$$
p H=-\log \left[H^{+}\right]=-\log (0.04)=1.4
$$

$2 \mathrm{pK}_{a}$ and pK_{b}

In the same way that it is convenient to express the concentration of hydronium or hydroxide ions as a logarithmic value, it can be useful to express the acid and base dissociation constants as pK_{a} and pK_{b}, since they can again differ by many orders of magnitude between species. The definition of p as an operator remains the same, so $\mathrm{pK}_{a}=-\log _{10}\left(\mathrm{~K}_{a}\right)$ and $\mathrm{pK}_{b}=-\log _{10}\left(\mathrm{~K}_{b}\right)$.

Example: For an 0.2 M solution of pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$, a base with a pH of 9.28 , determine the pK_{b}.
First, let's write a dissociation equation for pyridine:

$$
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}
$$

Then, we can convert the pH to a pOH , since pyridine is a base:

$$
p O H=14-p H=14-9.28=4.72
$$

Next, we can convert the pOH into a concentration of hydroxide ions:

$$
\begin{gathered}
p O H=-\log _{10}\left[O H^{-}\right] \\
{\left[O H^{-}\right]=10^{-p O H}=10^{-4.72}=1.89 \times 10^{-5}}
\end{gathered}
$$

Then, we can write an expression for the base dissociation constant:

$$
K_{b}=\frac{\left[C_{5} H_{5} N H^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[C_{5} H_{5} N\right]}
$$

And write our ICE table: Plugging these final values into the expression from above for K_{b} :

	$\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right]$	$\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$
Initial	0.2	0 M	0 M
Change	$-x \mathrm{M}$	$+x \mathrm{M}$	$+x \mathrm{M}$
Final	$0.2-x \mathrm{M}$	$x \mathrm{M}$	$x \mathrm{M}$
$K_{b}=\frac{x^{2}}{0.2-x}$			

Above, we determined the value of $x=\left[\mathrm{OH}^{-}\right]=1.89 \times 10^{-5}$, so we can simply plug in to solve for K_{b} :

$$
K_{b}=\frac{\left(1.89 \times 10^{-5}\right)^{2}}{0.2-1.89 \times 10^{-5}}=1.8 \times 10^{-9}
$$

Finally,

$$
p K_{b}=-\log \left(K_{b}\right)=8.74
$$

MIT OpenCourseWare
https://ocw.mit.edu/

3.091 Introduction to Solid-State Chemistry

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

