Session #17: Homework Problems

Problem #1

You are operating an x-ray tube with a chromium (Cr) target by applying an acceleration potential (V) of 60 kV. Draw a schematic of the x-ray spectrum emitted by this tube; label on it three characteristic λs and give the numerical value of two of these.

Problem #2

- (a) An X-ray tube with a silver (Ag) target at a plate voltage of 66 kV. Calculate the value of λ_{SWL} , the shortest wavelength.
- (b) Sketch the emission spectrum (intensity vs. wavelength) of the Ag target in part (a). On your sketch, indicate the *relative* positions of the K_{α}, K_{β}, L_{α}, and L_{β}lines and λ_{SWL} . It is not necessary to calculate the λ values of the K_{β}, L_{α}, and L_{β}lines.
- (c) In one or two sentences explain the origin of the continuous spectrum.

Problem #3

Determine the wavelength of $\lambda_{K_{\alpha}}$ for molybdenum (Mo).

Problem #4

Identify the element giving rise to K_{α} with $\lambda = 2.51 \times 10^{-10}$ m.

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.