Self-Assessment: Aqueous Solutions

Weekly Homework Quiz - Solution Outlines

(a) The value of K_a for perchloric acid, HClO₄(*aq*), is 1×10^8 . Calculate the *p*H and the *p*OH of 1.11 M HClO₄(*aq*) in water.

with a value of $K_a = 10^8$, HClO₄ is a strong acid \Rightarrow complete dissociation $\therefore 1.11 \text{ M Hl}(aq) \Rightarrow 1.11 \text{ M} = [\text{H}^+] = [\text{ClO}_4^-]$ $\therefore \text{ pH} = -\log_{10}[\text{H}^+] = -\log_{10}1.11 = -0.0453$ $\therefore \text{ pOH} + \text{ pH} = 14 \Rightarrow \text{ pOH} = 14.0453$

(b) The compound, yttrium iodate, $Y(IO_3)_3$, upon dissolution in water dissociates into Y^{3+} and IO_3^{-} . At 37°C the solubility of $Y(IO_3)_3$ in water is 2.22×10^{-3} M. Calculate the value of the solubility product, K_{sp} , of $Y(IO_3)_3$.

$$Y(IO_3)_3 = Y^{3+} + 3 IO_3^{-}, \text{ from which we get } K_{sp} = [Y^{3+}][IO_3^{-}]^3$$
$$c_s = 2.22 \times 10^{-3} = [Y^{3+}] = 1/3 [IO_3^{-}] \implies [IO_3^{-}] = 3 [Y^{3+}]$$
$$\therefore K_{sp} = c_s (3 c_s)^3 = 27 c_s^4 = 27 (2.22 \times 10^{-3})^4 = 6.56 \times 10^{-10}$$

MIT OpenCourseWare http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.