## Self-Assessment: Aqueous Solutions

## Weekly Homework Quiz - Solution Outlines

(a) The value of $K_{\mathrm{a}}$ for perchloric acid, $\mathrm{HClO}_{4}(a q)$, is $1 \times 10^{8}$. Calculate the $p \mathrm{H}$ and the $p \mathrm{OH}$ of $1.11 \mathrm{M} \mathrm{HClO}_{4}(a q)$ in water.
with a value of $K_{\mathrm{a}}=10^{8}, \mathrm{HClO}_{4}$ is a strong acid $\Rightarrow$ complete dissociation

$$
\begin{aligned}
& \therefore 1.11 \mathrm{M} \mathrm{HI}(\mathrm{aq}) \Rightarrow 1.11 \mathrm{M}=\left[\mathrm{H}^{+}\right]=\left[\mathrm{ClO}_{4}^{-}\right] \\
& \therefore \mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=-\log _{10} 1.11=-0.0453 \\
& \because \mathrm{pOH}+\mathrm{pH}=14 \Rightarrow \mathrm{pOH}=14.0453
\end{aligned}
$$

(b) The compound, yttrium iodate, $\mathrm{Y}\left(\mathrm{IO}_{3}\right)_{3}$, upon dissolution in water dissociates into $\mathrm{Y}^{3+}$ and $\mathrm{IO}_{3}{ }^{-}$. At $37^{\circ} \mathrm{C}$ the solubility of $\mathrm{Y}\left(\mathrm{IO}_{3}\right)_{3}$ in water is $2.22 \times 10^{-3} \mathrm{M}$. Calculate the value of the solubility product, $K_{\text {sp }}$, of $\mathrm{Y}\left(\mathrm{IO}_{3}\right)_{3}$.

$$
\begin{aligned}
& \mathrm{Y}\left(\mathrm{IO}_{3}\right)_{3}=\mathrm{Y}^{3+}+3 \mathrm{IO}_{3}^{-}, \text {from which we get } K_{\mathrm{sp}}=\left[\mathrm{Y}^{3+}\right]\left[\mathrm{IO}_{3}^{-}\right]^{3} \\
& \mathrm{c}_{\mathrm{s}}=2.22 \times 10^{-3}=\left[\mathrm{Y}^{3+}\right]=1 / 3\left[\mathrm{IO}_{3}^{-}\right]\left[\mathrm{IO}_{3}^{-}\right]=3\left[\mathrm{Y}^{3+}\right] \\
& \therefore K_{\mathrm{sp}}=\mathrm{c}_{\mathrm{s}}\left(3 \mathrm{c}_{\mathrm{s}}\right)^{3}=27 \mathrm{c}_{\mathrm{s}}^{4}=27\left(2.22 \times 10^{-3}\right)^{4}=6.56 \times 10^{-10}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

### 3.091SC Introduction to Solid State Chemistry

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

