Supplemental Exam Problems for Study Solutions Key

Problem \#1
(a) Identify the conjugate acid-base pairs in each equilibrium by drawing a line connecting each acid with its conjugate base, and identify the acid of each acid/base pair:
acid acid
(i) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(a q)+\mathrm{NH}_{4}^{+}(a q)$
$\underset{\mathrm{H}_{2} \mathrm{~F}^{2}(a q)+\mathrm{SbFF}_{6}(a q)}{\mathrm{aci}}$ * there is another way to acid Think about This
(b) A 1.11 M solution of fluoroacetic acid, $\mathrm{FCH}_{2} \mathrm{CO}_{2} \mathrm{H}$, is 5% dissociated in water.
(i) Calculate the value of the $p K_{\mathrm{a}}$ of $\mathrm{FCH}_{2} \mathrm{CO}_{2} \mathrm{H}$.
lit x be the
extent of
dissociation

$$
\therefore K_{a}=\frac{\left[\mathrm{FCH}_{2} \mathrm{CO}_{2}-\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{FCH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]}=\frac{x^{2}}{1-x} \text { where } x=(0.05)(1.11)=0.0555
$$

so $K_{a}=\frac{(0.0555)^{2}}{1-0.0555}=3.26 \times 10^{-3} \Rightarrow p^{K} K_{a}=-\log _{10}\left(K_{a}\right)=2.49$
(ii) Calculate the value of the pH of the solution.

* split The HF into 2 separate molecules:

$$
S 6 F_{5}+H F+H F={ }^{\text {acid }}+\underset{L}{\text { base }}+{ }^{\text {acid }}+{ }^{\text {base }}
$$

Problem \#2

Chromium hydroxide $\left(\mathrm{Cr}(\mathrm{OH})_{3}\right)$ dissolves in water according to

$$
\mathrm{Cr}(\mathrm{OH})_{3}=\mathrm{Cr}^{3+}(a q)+3 \mathrm{OH}^{-}(a q) \quad K_{\mathrm{sp}}=6.31 \times 10^{-31} \text { at } 25^{\circ} \mathrm{C}
$$

Calculate the solubility of chromium hydroxide in $3.091 \mathrm{nM}\left(3.091 \times 10^{-9} \mathrm{M}\right) \mathrm{NaOH}(\mathrm{aq})$. Express your answer in moles of $\mathrm{Cr}(\mathrm{OH})_{3}$ per liter of solution.

$$
\begin{aligned}
& K_{50}=\left[\mathrm{Cr}^{3+7}\right]\left[\mathrm{OH}^{-}\right]^{3} \\
& \text { with 3.091 nM NaOH } \Rightarrow\left[\mathrm{OH}^{-}\right]=3.091 \times 10^{-9} \mathrm{M} \\
& \therefore \quad\left[\mathrm{Or}^{3+}\right]=K_{5 p} /\left[\mathrm{OH}^{-}\right]^{3}=6.31 \times 10^{-31} /\left(3.0011 \times 10^{-9}\right)^{3} \\
& \quad=2.14 \times 10^{-5} \\
& \therefore \text { Solubility of } \mathrm{CH}\left(\mathrm{OH}_{3}=\left[\mathrm{C}^{3+}\right]=2.14 \times 10^{5} \mathrm{M}\right.
\end{aligned}
$$

Problem \#3

Comment on the solubility of iodine (I_{2}) in each of these liquids: (1) carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$; (2) hydrogen fluoride (HF). State whether at room temperature you expect I_{2} to be highly soluble or almost insoluble, and explain why.
(1) I_{2} in $\mathrm{CCl}_{4}(\ell)$

Highly soluble because both I_{2} and CCl_{4} are nonpolar and therefore have the capability of mixing.
(2) I_{2} in $\mathrm{HF}(\ell)$

Amost insoluble because I_{2} is a homopolar molecule and therefore nonpolar while HF is polar with hydrogen-bonding capability.

Problem \#4

(a) The water dissociation equilibrium constant, K_{w}, expresses the relationship between hydronium $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$and hydroxyl $\left(\mathrm{OH}^{-}\right)$concentrations by the expression

$$
K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

Owing to the presence of dissolved salts the value of $p K_{\mathrm{w}}$ for seawater is 13.776 (not 14.00 as it is for pure water), where $p K_{\mathrm{w}}$ is defined as $-\log _{10} K_{\mathrm{w}}$. Calculate the concentration of hydroxyl ions $\left(\mathrm{OH}^{-}\right)$in seawater at a $p H$ value of 7.00 . Express your answer in moles OH^{-}per liter of solution (M).

$$
\begin{aligned}
K_{\omega}=\left[\mathrm{H}^{+}\right][\mathrm{OH}] & =10^{-13.776} \\
p H & =7.00 \Rightarrow\left[\mathrm{H}^{+}\right]=10^{-7} \\
\therefore[\mathrm{OH}]=K_{\omega} /\left[\mathrm{H}^{+}\right] & =10^{-13.776} / 10^{-7} \\
& =1.67 \times 10^{-7} \mathrm{M}
\end{aligned}
$$

(b) Would seawater at a pH value of 7.00 be classified acidic, basic, or neutral? Explain.
alkaline: $p H$ of 7.00 is more alkaline than $13.776 / 2=6.89$.
(c) Give an example of a dissolved salt that would cause the shift in the value of $p K_{\mathrm{w}}$ for seawater to 13.776 from the commonly accepted value of 14.00 which is valid for pure water. Justify your choice of salt.

Choose any hydroxide such as NaOH or $\mathrm{Ca}(\mathrm{OH})_{2}$ the presence of OH^{-}operates through the common ion effect to shift the neutrality point of the acid-base equilibrium

MIT OpenCourseWare
http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

