3.091 OCW Scholar Self-Assessment Aqueous Solutions

Supplemental Exam Problems for Study Solutions Key

Problem #1

 $K_a =$

50

(a) Identify the conjugate acid-base pairs in each equilibrium by drawing a line connecting each acid with its conjugate base, and identify the acid of each acid/base pair:

acid
(i)
$$CH_3CO_2H(aq) + NH_3(aq) \rightleftharpoons CH_3CO_2^-(aq) + NH_4^+(aq)$$

(ii) $SbF_5(aq) + 2 HF(aq) \rightleftharpoons H_2F^+(aq) + SbF_6^-(aq)$ There is another way to
acid Think about This

 $\int_{-\infty}^{\infty} \frac{1}{x^2} + \frac{1}{$

(b) A 1.11 M solution of fluoroacetic acid, FCH₂CO₂H, is 5% dissociated in water. (i) Calculate the value of the pK_a of FCH₂CO₂H. FCH₂CO₂H + H₂O = FCH₂CO₂+H₃O⁺ extent of 22 dissociation

CH2CO2H $K_a = -log_{0}(K_a) = 2.49$ 0.0555 **3.26** × 10

(ii) Calculate the value of the pH of the solution.

 H_{30}^{+}

 CH_{co}

1.26 100) 1.11 M × 0.05

Alperate molecules: 56F= + HF +H

Problem #2

Chromium hydroxide (Cr(OH)₃) dissolves in water according to

$$Cr(OH)_3 = Cr^{3+}(aq) + 3 OH^{-}(aq)$$
 $K_{sp} = 6.31 \times 10^{-31} \text{ at } 25^{\circ}C$

Calculate the solubility of chromium hydroxide in 3.091 nM (3.091×10^{-9} M) NaOH(*aq*). Express your answer in moles of Cr(OH)₃ per liter of solution.

 $0H^{-7} = 3.091 \times 10^{-9} M$ $s^{-31} = 6.31 \times 10^{-31} / (g.091 \times 10^{-9})^{-3}$ with 3.071 nM NaOH => OH JOH 7 = 2.14 × 10⁻⁵ = 2.14 × 10⁻⁵ Solubility of CfOH} = $2Cr^{3+} = 2.14 \times 10^{5} M$

Problem #3

Comment on the solubility of iodine (I_2) in each of these *liquids*: (1) carbon tetrachloride (CCl₄); (2) hydrogen fluoride (HF). State whether at room temperature you expect I_2 to be *highly soluble* or *almost insoluble*, and explain why.

(1) I_2 in CCl₄(ℓ)

Highly soluble because both I₂ and CCl₄ are nonpolar and therefore have the capability of mixing.

(2) I_2 in $HF(\ell)$

Amost insoluble because I_2 is a homopolar molecule and therefore nonpolar while HF is polar with hydrogen-bonding capability.

Problem #4

(a) The water dissociation equilibrium constant, K_w , expresses the relationship between hydronium (H₃O⁺) and hydroxyl (OH⁻) concentrations by the expression

 $K_{\rm w} = [\rm H_3O^+][\rm OH^-]$

Owing to the presence of dissolved salts the value of pK_w for seawater is 13.776 (not 14.00 as it is for pure water), where pK_w is defined as $-\log_{10}K_w$. Calculate the concentration of hydroxyl ions (OH⁻) in seawater at a *pH* value of 7.00. Express your answer in moles OH⁻ per liter of solution (M).

 $K_{w} = [H^{+}]_{07}$ $pH = 700 \Rightarrow [H^{+}] = 10^{-7}$ $\sim [0H^{-7}] = K_{w} / [H^{+}] = 10^{-13.776} / 10^{-7}$ $= 1.67 \times 10^{-7} M$ Kw=[H+][04]= 10-13.776

(b) Would seawater at a *pH* value of 7.00 be classified acidic, basic, or neutral? Explain.

alkaline: pH of 7.00 is more alkaline than 13.776/2 = 6.89.

(c) Give an example of a dissolved salt that would cause the shift in the value of pK_w for seawater to 13.776 from the commonly accepted value of 14.00 which is valid for pure water. Justify your choice of salt.

Choose any hydroxide such as NaOH or $Ca(OH)_2$ the presence of OH^- operates through the common ion effect to shift the neutrality point of the acid-base equilibrium

MIT OpenCourseWare http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.