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Let's go to the lesson. So the last day we studied VSEPR, which allowed us to infer 
the shapes of molecules, covalent molecules. Today I want to talk about the state of 
aggregation. What do I mean by state of aggregation? Is something a solid, a liquid 
or a gas at a particular temperature? So 3.091 is introduction to solid state 
chemistry. One of the things we need to know is, under what conditions is the solid 
state stable? And the state of aggregation, when it applies to covalent molecules, is 
going to lead us to a discussion of secondary bonding. So today's lecture is state of 
aggregation or secondary bonding.  
 
Now let's just reflect upon what we've learned up until now. We studied ironic 
bonding and we knew that ionic bonding necessarily leads to crystal formation 
because we have unsaturated bonds. And that leads to an ion array of unlimited size 
until you run out of reagent. And something honking big made of ions is going to be 
a solid at room temperature.  
 
Last day we appreciated with covalent bonding we have two options. We can either 
make discrete molecules such as HCl. And HCl as a discrete molecule, depending on 
a number of factors that I'm going to show you today, could be a solid, liquid or gas. 
And we're going to understand more deeply how to sort out between the three of 
them. Or, I showed you at the end of the last lecture, you can make a three-
dimensional network and diamond was one example. If it's a three-dimensional 
network that is a large array of solid then that means that you're going to end up 
with a formation of a crystal, which is going to give you a solid. Diamond is solid at 
room temperature, graphite is solid at room temperature.  
 
So let's now go to the one case that we haven't dealt with, and that's the formation 
of discrete molecules. So let's look at discrete molecules. And what we want to 
understand is whether they're going to be solid, liquid or gas at room temperature 
and what's the relevant physics here in order to make that determination? The 
relevant physics is the following. We're going to compare two forces. We're going to 
compare the cohesive force between molecules versus the disruptive force. And the 
disruptive force in 3.091 is always going to be thermal. It's thermal energy. We 
know this. As we heat things they go from solid to liquid to vapor as temperature 
increases. So thermal energy plays the role of the destructive force whereas the 
bonding is something that is the cohesive force.  
 
So let's go back to HCL. Last day we looked at HCl. So here's one HCl molecule. We 
have a covalent bond. It's a covalent bond within the molecule. We know this is a 
polar covalent molecule, with the chlorine having greater electronegativity and 
pulling the electrons towards its end. And furthermore, this bond I want to categorize 
as within the molecule so I'm going to call it intramolecular. Intramolecular.  
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Now if I want to answer the question, is hydrogen chloride going to be a solid, liquid 
or gas at room temperature, I don't have the information on the board. The only way 
I can answer that question is to put another hydrogen chloride. This simply forms the 
bond between hydrogen and chlorine. To determine whether hydrogen chloride is a 
solid, liquid or gas, I need to look at how one hydrogen chloride molecule bonds to 
another hydrogen chloride molecule. So now this end is the delta plus this end is 
delta minus. And we have again an intramolecular bond.  
 
So the question is, how does one hydrogen chloride bond to another hydrogen 
chloride? This is the intermolecular bond. Intermolecular bond. So intermolecular 
bonds govern the state of aggregation. And I'm going to show you the different 
types of intermolecular bonds. This intermolecular bond isn't the primary bond. The 
primary bond is here inside the molecule. So the intermolecular bond is known as a 
secondary bond.  
 
And there three types of secondary bonds. We're going to look at them in turn. So 
the first one is depicted here on the board. And it's called dipole-dipole interactions. 
And these obviously occur only between polar molecules. Operative and polar 
molecules. Not in. Between. Take out in. Operative between polar molecules. So 
we've made something covalent and now how does one stick to the other?  
 
Alright and I think I've got a cartoon here that shows this. There we go. That's taken 
from an old book that I had. So you see the H and the Cl and we have a dipole 
moment and the negative end of one dipole attracted to the positive end of another 
dipole. So we have a net dipole moment here and we can measure the distance 
between the center of the dipole-- center to center spacing and call it r. Center to 
center dipole spacing. And say that the energy in dipole-dipole interaction-- I don't 
expect you to know this by heart and do anything with it, but I just want you to 
realize that it's a weak force. This is very weak. It's proportional to the magnitude of 
the dipole moment. You'd expect that. Weak dipole moment, weak energy. Strong 
dipole moment, strong energy. Turns out it goes as the fourth order of the dipole 
moment. And it's inversely proportional to the separation. Only it's not coulombic, it 
goes as 1 over r cubed.  
 
And there's a temperature factor. 1 over t. As temperature goes up, this energy goes 
down. And these are very weak forces on the order of about 5 kilojoules per mole. 
You remember what the crystallization energy of sodium chloride was? 787 kilojoules 
per mole. So this is very, very weak. It's operative at, between, at low temperatures. 
At very low temperatures.  
 
So for example, hydrogen chloride, in the case of hydrogen chloride, the melting 
point of hydrogen chloride is minus 115 degrees C and the boiling point is minus 85 
degrees C. You can see at very low temperatures we already have enough thermal 
energy to disrupt. So if we have solid hydrogen chloride, the forces between the 
hydrogen chloride molecules in the solid are these very weak dipole-dipole 
interactions.  
 
And I think there's a couple more cartoons here. This is taken from your text. So 
there we go. There it is. That's the soup that might be HCl liquid. OK so that's the 
first type of secondary bond. Dipole-dipole interaction.  
 



Let's look at the second one. The second one is called induced dipole-induced dipole. 
And it's operative in non-polar species. Dominant in non-polar species. Why am I 
using the word, species? I'm trying to be a pedant and use fancy words? No. 
Because I'm going to make it generic. I'm going to show it works in atoms and in 
compounds.  
 
So as examples, what are some non-polar species? Well how about something like 
argon? Argon if you look on the periodic table it'll show you that it has a melting 
point of 84 kelvin and a boiling point of 87 kelvin. So if I cool argon to below 84 
kelvin, I get argon ice. So what are the bonds between one argon atom and another 
argon atom? It can't be this. There's no net charge. It can't be ionic. It doesn't form 
a covalent network the way diamond does. How do you justify the existence of solid 
argon? It's just so cold that it just sits there and freezes? I mean, how does it bond? 
There needs to be some kind of bonding.  
 
And other non-polar species. So for example, the molecule iodine. Iodine melting 
point is above room temperature. It's a solid crystal at room temperature. Well 
there's a strong covalent bond inside iodine. But how does one iodine bond to 
another and to another and to another? And we can even go  to polyatomic species, 
such as methane.  
 
You know there was data from the Cassini Probe. Look at this. This is an image from 
the Cassini Probe. This is an island group. The yellow is an island group. The blue is 
a methane sea. A sea of liquid methane on the moon of Saturn, Titan. So there's 
liquid methane. How does liquid methane form? What causes one methane to bond 
with another methane? That's the question that we're wrestling with.  
 
So let's look at it first in a simpler context. Let's look at it with argon. So I put argon 
here. It's a spherical atom. And the question we had before says, how does one 
argon bond to another argon, as has to be the case in the solid or liquid argon. So 
we know that this has a lot of electrons and the atom is net neutral. But the 
electrons are in motion. If I had an attosecond camera and I went in here and I 
went, snap, I could catch a freeze frame where the electrons aren't symmetrically 
distributed around the nucleus. This nucleus, the atom is in constant fluctuation. But 
net neutral. Time average it's symmetrical. So at some moment I might have a 
preponderance of electrons over here at around three o'clock. So this end of the 
argon is a little bit delta minus. Which means the other end is delta plus.  
 
Now what happens if this is delta minus, this is delta plus? Can you see that the 
positive end of this argon atom will then pull on the electron distribution of the 
adjacent argon atom rendering it delta minus at three o'clock and delta plus? So this 
is the dipole in one, induces a dipole in another. And why does it occur in the first 
place? It occurs because the electrons are in motion. Electrons in motion lead to time 
fluctuating dipoles. They're time fluctuating.  
 
Time average, there's no net dipole moment. I'm not going back on what I said 
before. There's no net dipole moment here, but this is time fluctuating dipole. Time 
fluctuating dipole.  
 
So who was the first to explain this? The first to explain this was Fritz London in 
1930. In 1930 Fritz London gave us the explanation because this troubled people for 
a long time. And he did so in a quantitative manner. And the mathematics of the 
treatment are identical to the mathematics for the dispersion of light under certain 



conditions. This has nothing to do with the dispersion of light. The mathematical 
formulation imitates the formulation of the dispersion of light and hence the force 
here is known as the London Dispersion Force.  
 
So people will say that solid argon is held together by London Dispersion Forces. Or 
the bond is known by the name van der Waals. We either call them van der  Waals 
bonds or London Dispersion Forces. Van der Waals was Dutch. I know how to spell 
the word wall. This is the dutch spelling. W A A L S. Van der Waals.  
 
So in this system here, the London Dispersion Force or the van der Waals bond is in 
fact not the secondary bond. It's the primary bond, isn't it? It's the only bond. So by 
definition it must be the primary bond. But can you see that in every compound, 
including diamond, we have time fluctuating dipoles in all of the atoms? It's not just 
argon that has time fluctuating dipoles. Every atom in you and me has time 
fluctuating dipoles. But we're held together by much greater forces. So that's why I 
say that in this case this is the dominant force. But it's operative in everything. 
Because wherever we have electrons, they're in motion. So this is the dominant one.  
 
Alright so we can look at it in a few other instances. So for example we can look at it 
in the case of iodine. We can look at it in the case of methane. All the same. Time 
fluctuating dipoles. And this is a very, very weak force. So the energy in London 
Dispersion Forces, or van der Waals bonds, is proportional to a quantity called the 
polarizability. The polarizability is-- and this was defined by London-- polarizability is  
the measure of how easy it is to induce this dipole. A measure of the ease of electron 
displacement within an atom. And it depends on, it's influenced by the size and it's 
influenced by the number of electrons in the atom.  
 
So what do I mean by that? Well let's take two systems. Suppose I've got argon and 
I'll go up two members in the same series and I've got helium. So what are the 
forces that hold helium together? Same thing. But the boiling point here is 87 kelvin. 
The boiling point here is 4.2 kelvin. Why does this have such a low boiling point? 
Well, polarizability. Size-- helium is smaller. So the degree, the corral in which the 
electrons can roam is smaller. So the extent of electron displacement is smaller. And 
secondly there are only two electrons. And they're in 1s, so they're tightly held. And 
so the delta minus delta plus capable of being created in helium is tiny compared to 
the delta minus delta plus that can be created in argon. So the energy goes as 
polarizability squared and divided by r to the sixth, where this is the separation. Not 
the radius but this is separation. Dipole separation. And this is a font issue. This is 
proportional to alpha. So you can tell the difference. This is a proportional that's to 
alpha.  
 
Of course you can't tell the difference. This is contextual. If I just wrote this by itself, 
you don't know what it is. My goodness you're nervous. So nervous.  
 
All right let's take a look at-- here's the cartoons. Induced dipole. And here's 
London's paper. Here's London's paper as it first appeared in 1930. Theory and 
System of Molecular Forces. And here's some cartoons from your book. This is 
helium, showing helium. It's kind of funny how the artist shows. Like there's these 
two helium atoms and they're absolutely immobile and all of a sudden one of the 
helium atom starts jiggling and then it induces a dipole moment in the other one. 
That's not how it happens, but anyway.  
 



Alright this is hydrogen. Same thing as iodine. All right so there's delta plus, delta 
minus. Because the electrons are moving even though there's a strong covalent bond 
inside. So let me just make the point, I want to make sure people are very clear 
about primary versus secondary bonding. So if I look at iodine. I2. This is a covalent 
bond. It's homonuclear. This covalent bond, there's no net dipole moment. Here's 
another iodine. But then we have time fluctuating dipoles. So this delta minus isn't 
because this is the bond here. This is the primary bond. This is the primary bond and 
it's covalent. And this is the secondary bond. And the secondary bond is London 
Dispersion Force or van der Waals bond because this is induced dipole.  
 
So now let's look at-- oh here's another one. This one gets on my nerves. Oh 
actually this is good. This is this the bad one. All right so I'm going to show you 
polarizability. So here's a series of sp3 hybridized chains. Propane, octane, icosane. 
They're all the same. They look like this. Ch is sp3 hybridized. And so you just have-- 
so what is that, C 3 H H. So it's just-- so you have 1, 2, 3 4. so there's hydrogen, 
hydrogen, hydrogen, and on the fourth one I'm going to make it flat instead of trying 
to make a tetrahedron. So 1, 2, 3 hydrogens. The fourth one is carbon. 1, 2 
hydrogens, carbon carbon. 1, 2 3 hydrogens. So this is C3H8. And compare that to 
the longer one. Which is octane, which is C8H18. So it's 1, 2, 3, 4, 5, 6, 7, 8. And all 
you have got to do is, 1, 2, 3, 4, 5, 6, 7, 8. You put four sticks off of every carbon. 
You can't go wrong. You count them up. You got C8H18. Look at the structures. They 
are the same.  
 
So how come propane is a gas at room temperature? Whereas octane, which is the 
principal constituent of gasoline, is a liquid at room temperature? It all comes down 
to polarizability. This one's got a longer corral. So if you like the delta minus versus 
the delta plus, it's basically the same here except that separation is bigger. All right, 
so that's pretty good.  
 
This is the one that gets on my nerves. You see this? It's exactly what I just showed 
you. So here's methane. And there's the propane. Here's butane and somewhere 
between butane and pentane we cross the the line at room temperature. So pentane 
is liquid, butane is gas. And you keep going up, up, up, and finally if you get to C20 
you go from liquid to solid because now the van der Waals forces are strong enough 
that even at room temperature you make a solid. It looks like paraffin. That's why 
you can melt paraffin, because it's got weak van der Waals forces. So temperature 
disrupts and it reforms. If you try to break a covalent bond, you pyrolyze the thing 
and you don't get it back. Secondary bonds allow for ready processing.  
 
Here's what bothers me about this. Instead of talking about polarizability, which is a 
physical quantity that means something. They say molecular weight. Well it's true 
that these scales, these are heavier and it's monotonic. But to me what's the 
relevant physics between the ability to form van der Waals bonds and the mass. It's 
just a dumb thing. It's not a gravitational effect. So that's why this thing is stupid. 
And you see it all over in chemistry books. And it's just dumb. And if you put that on 
my exam you're not going to get points for it. Because that's dumb.  
 
OK let's go to the next one. There's a third type of bonding. There are certain things 
I feel strongly about and that's one of them. OK so let's look at the third type of 
secondary bonding. The third type of secondary bonding is called hydrogen bonding. 
Hydrogen bonding. It's a type of secondary bonding. And it occurs between hydrogen 
and the most electronegative elements, fluorine, oxygen, nitrogen. Why these? 
Because they have very, very high average valance electron energy. So the average 



valance electron energy I'm quoting in that second column, not megajoules per 
mole, but in sensible units like electron volts. And so you can see, when you get up 
around 18, 19 electron volts you cross a threshold. And that's the electronegativity 
as represented by average valance electron energy.  
 
So you can see that as the electronegativity gets beyond some threshold value, 
roughly 3, then you can form hydrogen bonds. So this is owing to high average 
valance electron energy, or if you like electronegativity. Which means very strong 
polarity in the covalent bond. So you say, well there's polar and there's even more 
polar. So let's see what happens.  
 
So I'm going to use a prototypical value here. I'm going to look at HF. So if I look at 
HF let's go through the Lewis structure. There's H with it's 1 electron. And F with the 
7. 1, 2, 3, 4, 5, 6, 7. And so we have a covalent bond here. We know fluorine is the 
most electronegative so we have a dipole moment here. Now the dipole moment is 
very strong here. This is an accounting procedure to put the two electrons, but it no 
way represents the physical position of these electrons. They're brought in very close 
to the fluorine. So it's not some symmetrically disposed between H and the F.  
 
So I can't tell anything about whether HF is a solid, liquid or gas. Why? Because 
there's only one sitting here. I have got to put at least one more. Because this is a 
primary bond. And it tells me how H bonds to F. It doesn't tell me how one HF bonds 
to another HF. So I'm going to put another HF over here. So here's another HF. And 
it's also dipole. But there's something special about that. Already there's a dipole-
dipole interaction. But the hydrogen bond is much stronger. It's much stronger. And 
why is it stronger? The electron in this hydrogen on the right is pulled towards the 
fluorine to such an extent that this hydrogen is so denuded of its electrons that it's 
acting as proton-like. It's proton-like. Now don't tell people that Professor Sadoway 
said that hydrogen inside an HF is a proton. It's not a proton but it's starting to get 
more nearly like a proton.  
 
Now what do we know about a proton? Positive charge. Tiny high-charge density. So 
this hydrogen's looking forlornly over at its electron that's being hogged by the 
fluorine to a right. And what do we know about these? Oh it's time for colored chalk. 
It's time for colored chalk! What color are those? They're red because they're non-
bonding. And the bonding are the blue in-between. And what do we know about the 
volume occupied by a non-bonding pair versus a bonding pair? It's larger. Because 
they're not constrained. So not only do we have a non-bonding pair, they're not just 
here. They're sort of flopping around. Hanging way out and there's this thing here 
that's almost denuded of its electrons, so it starts looking over here saying, if I can't 
get any action over here, what about here?  
 
So that proton starts establishing contact with the non-bonding pair of electrons on 
the adjacent fluorine And this is the hydrogen bond. The hydrogen bond is here. The 
hydrogen bond is not here. If you write this I will give you a 0. I'll give you a 0 with 
a circle around it. It's called the doughnut. That's what you get when you write 
something so stupid. This is not the hydrogen bond. This is the hydrogen bond. OK? 
So it works. It works.  
 
Now let's see the effect of it. Let's see the effect. Alright so here's a cartoon showing 
that in water the hydrogen-oxygen spacing is about 1 angstrom. And the hydrogen-
oxygen spacing in adjacent water molecules can be less than 2 angstroms. So 



there's certainly a difference. I mean it can't be the same. If it were the same it 
would be a covalent primary bond. You'd have a network.  
 
Now this is interesting here because this shows the values that are given on your 
periodic table, which were obtained without the use the average valance electron 
energies. These trends are correct. But look at this one. They've got chlorine up at 
3.16. And all of these have been revised. Now on a test, just use what you've been 
given on the periodic table. But I want you to understand how this is rationalized 
with better data coming from photoelectron spectroscopy.  
 
So now I want to show you the implications of hydrogen bonding. The implications. 
So I've got 4 homologous series. So they're all element plus hydrogen. So let's start 
with the group 14. That's shown here in purple. And what do we have? All of these, 
we'll start with methane. CH4, so that's a central atom. 1, 2, 3 4. They're all 
tetrahedral. Hydrogens at the corners. Non-polar. And no hydrogen bonding 
capability. So one methane bonds to another methane by weak van der Waals 
forces. That's how it does it. It doesn't matter if I substitute the carbon with silicon 
or germanium or tin. I can put SnH4. And how does SnH4 bond to another SnH4? 
It's just by London Dispersion Forces. That's all that's operative here. And so we 
have, what makes sense here, is that the heavier, more massive-- no, the ones that 
have greater polarizability have a higher boiling point. Because their van der Waals 
forces are stronger. That means you have to go to a higher temperature to achieve 
disruption. Same temperature, weak van der Waals force: gas. Same temperature, 
strong van der Waals force: liquid or solid. And you see the boiling point here.  
 
Monotonic from the lightest to the heaviest. Now let's go to the next one. Let's go to 
the green line, group 15. Well group 15, what's that look like? Let's look at the 
structure of group 15. Group 15 is-- ammonia is one of them. So we can look at the 
structure of ammonia. And if we use VSEPR we'll end up with something that looks 
like this. I'll go through the whole thing. You're going to end up with three bonds like 
this. It's a tetrahedral skeleton with a lone pair. Ah, colored chalk.  
 
So now, what happens? I can't say anything about this. Why can't I say anything 
about whether this is a solid, liquid or a gas? It's the only one there. I have got to 
put another one. So put another one up here. N. H. H. H. Same gambit with the 
hydrogen fluoride. This hydrogen sees this lone pair and establishes a hydrogen 
bond. And that adds to what otherwise would have been a dipole-dipole. This has a 
net dipole along moment, agreed? There's a dipole-dipole moment here. But this 
bond is even stronger. The hydrogen bond is even stronger than dipole-dipole 
interactions.  
 
So now let's look at the graph up here. So what about in phosphene, PH3? No 
phosphorous isn't electronegative enough. So in phosphene, in arsine and in stibine 
we don't have hydrogen bonding. So you see this series in the group 4 here? It goes 
monotonic from the heaviest element down to the lightest element. But here, 
heaviest, less heavy, less heavy, and the lightest element that should be down here 
is up here. Why is the lightest compound not down here? Because of the addition of 
hydrogen bond.  
 
So ammonia is off the line. This line shows the trend based on dipole-dipole 
interactions only. And you can see the difference. See if you have van der Waals 
forces alone, versus dipole-dipole, dipole-dipole are stronger. So SnH4 has a lower 



boiling point than SbH3. I can't predict this but I could ask you, if I gave you this 
data, I'd say, can you explain this to me?  
 
Let's keep going. Let's go to group 16. So, telluride, selenide, suphide, the oxide, 
H2O, water. It should have a boiling point of minus 100 centigrade were it not for 
hydrogen bonding. How does water work? Again, SP3 hybridization. Oxygen, 1, 2, 3, 
4. Two lone pairs. 1, 2, H, H. And now what happens? I bring another water 
molecule over here and hydrogen bonding. And that hydrogen bond raises the 
temperature, raises the requirement for thermal disruption and moves the boiling 
point of water up to 100 degrees celsius.  
 
It it weren't for this we wouldn't have this conversation. Because we wouldn't have 
evolved as a species capable of conducting business at room temperature if water 
boiled at minus 100 celsius. Hydrogen bonding is critical. It's absolutely critical. So 
now you know. And this isn't just some little bit of pedantry for a professor. This is 
very important. Because we're going to learn later that, when it comes to 
biochemistry, we will appreciate that most biochemicals are made of carbon, oxygen, 
nitrogen and hydrogen. And that means you can have hydrogen bonds here. And you 
can have hydrogen bonds here. Hydrogen bonding is critical to life. So this is a very 
important thing to know about.  
 
OK we have a minute or two. So you can see polarizability increases here but 
hydrogen bonding operative here. That's explains the mystery. All right we're going 
to jump over this because we are out of time. And so I will simply show you a few 
pictures. Pictures! So this is a conference in Copenhagen in June of 1936. And 
there's Fritz London. But look at who else is at the conference. Niels Bohr, Wolfgang 
Pauli, Werner Heisenberg, Max Born. Remember the Born Exponent? You better 
remember it for Wednesday. This is Lise Meitner, you haven't met her yet. We'll get 
to her. This is Walter Stern. Stern-Gerlach. And this is James Franck. That's just the 
first two rows! That's quite a conference.  
 
Here's a picture of Fritz London sitting on a bench in Berlin with Erwin Schrodinger. 
Schrodinger is brooding; he's thinking. Fritz London is smiling. You know why? 
Because he's figured it out. He's figured out. It's time-fluctuating dipole, but he's not 
going to tell Schrodinger. He's going to say, you have to read about it. But you have 
to go to the library. Because if you don't read the primary sources, if you go to 
Wikipedia, you won't find this. Because this is not going to be in Wikipedia in 1913. 
OK, last thing-- hold on, hold on, hey wait a minute! Where are you going? We're not 
done yet. Did the professor say class is dismissed? No.  
 
So here's a biography of Fritz London, which I would recommend if you have a few 
minutes and you'd like to unwind. Go out, sit in the sun and read something like this. 
It tells the story of how he came up with these ideas. The rise of fascism in the '30s. 
He comes to the United States, takes a teaching position at Duke University. All of 
the people that he met along the way. All these people that we study, all this stuff, 
it's all there from his perspective. And the perspective of his biographer. Plus the 
pictures. So anyway, primary sources. Go read the primary sources. All right, class 
dismissed.   
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