Session #6: Homework Solutions

Problem #1

For a proton which has been subjected to an accelerating potential (V) of 15 Volts, determine its deBroglie wavelength.

Solution

$$E_{K} = eV = \frac{m_{p}v^{2}}{2}$$
; $v_{p} = \sqrt{\frac{2 eV}{m_{p}}}$

$$\lambda_{p} = \frac{h}{m_{p}v} = \frac{h}{m_{p}\sqrt{\frac{2eV}{m_{p}}}} = \frac{h}{\sqrt{2eVm_{p}}} = \frac{6.63 \times 10^{-34}}{(2 \times 1.6 \times 10^{-19} \times 15 \times 1.67 \times 10^{-27})^{\frac{1}{2}}} = 7.4 \times 10^{-12} \text{ m}$$

Problem #2

Electrons are accelerated by a potential of 10 Volts.

- (a) Determine their velocity.
- (b) Determine their deBroglie wavelength (λ_p) .
- (c) Will these electrons, on interaction with hydrogen atoms, be able to excite the ground state electrons in hydrogen?

Solution

The definition of an eV is the energy gained by an electron when it is accelerated through a potential of 1V, so an electron accelerated by a potential of 10V would have an energy of 10 eV.

(a)
$$E = \frac{1}{2}mv^2 \rightarrow v = \sqrt{2E/m}$$

.

 $E = 10 \text{ eV} = 1.60 \text{ x} 10^{-18} \text{ J}$

m = mass of electron = $9.11 \times 10^{-31} \text{ kg}$

$$v = \sqrt{\frac{2 \times 1.6 \times 10^{-18} \text{ J}}{9.11 \times 10^{-31} \text{ kg}}} = 1.87 \times 10^{6} \text{ m/s}$$

(b)
$$\lambda_p = h/mv$$

$$\lambda_p = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-34} \text{ kg} \times 1.87 \times 10^6 \text{m/s}} = 3.89 \times 10^{-10} \text{ m}$$

(c) The energy the electrons have $(E = e.V = 1.6 \times 10^{-18} \text{ J})$ must be compared with the smallest energy required to excite a H electron – that needed to move the electron from the n=1 shell to the n=2 shell.

E = k
$$\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$$
 = 2.18 x 10⁻¹⁸ J $\left(\frac{1}{4} - \frac{1}{1}\right)$ = 1.64 x 10⁻¹⁸ J

The E that the electrons have $(1.6 \times 10^{-18} \text{ J})$ is less than that required to excite an electron from the n=1 to the n=2 shell $(1.64 \times 10^{-18} \text{ J})$, so **no excitation could occur**.

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.