Session #5: Homework Solutions

Problem #1

A line of the Lyman series of the spectrum of hydrogen has a wavelength of 9.50×10^{-8} m. What was the "upper" quantum state (n_i) involved in the associated electron transition?

Solution

The Lyman series in hydrogen spectra comprises all electron transitions terminating in the ground state (n=1). In the present problem it is convenient to convert λ into \overline{v} and to use the Rydberg equation. Since we have an "emission spectrum", the sign will be negative in the conventional approach. We can avoid the sign problem, however:

$$\overline{v} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) = R \left(1 - \frac{1}{n_i^2} \right)$$

$$\overline{\frac{v}{R}} = \left(1 - \frac{1}{n_i^2} \right)$$

$$\frac{1}{n_i^2} = 1 - \frac{\overline{v}}{R} = \frac{R - \overline{v}}{R}$$

$$n_i^2 = \frac{R}{R - \overline{v}}$$

$$n_i^2 = \sqrt{\frac{R}{R - \overline{v}}} \qquad \overline{v} = \frac{1}{9.5 \times 10^{-8} \text{m}} = 1.053 \times 10^7 \text{ m}^{-1}$$

$$n_i = \sqrt{\frac{1.097 \times 10^7}{1.097 \times 10^7 - 1.053 \times 10^7}} = 5$$

Problem #2

List the possible values of the four quantum numbers for a 2p electron in boron.

Solution

<u>For 2p</u>

<u>l</u>	<u>m</u>	<u>S</u>
1	-1	1/2
1	-1	-1/2
1	0	1/2
1	0	-1/2
1	1	1/2
1	1	-1/2
	<u> </u> 1 1 1 1 1 1	<u>I</u> <u>m</u> 1 -1 1 -1 1 0 1 0 1 0 1 1 1 1

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.