Session #23: Homework Solutions

Problem #1

The decomposition of hydrogen peroxide, H_2O_2 , can be represented by the following reaction:

 $2H_2O_{2(aq)} \rightarrow 2H_2O_{(l)} + O_{2(g)}$

The table below reports data taken at room temperature (300 K).

$conc_{H_2O_2}$ (mol/liter)	time (seconds)	
2.32	0	
2.01	200	
1.72	400	
1.49	600	
0.98	1200	
0.62	1800	
0.25	3000	

Table 1. Decomposition of $H_2O_{2(aq)}$ at 300 K.

- (a) Show that the reaction is first order.
- (b) Calculate the value of the half-life of this reaction.
- (c) Suppose that the initial concentration of H_2O_2 were 3.5 M. How long would it take at 300 K to reduce the concentration of H_2O_2 to 25% of its initial value?

Solution

(a) To show that the reaction is first order, try fitting the logarithm of concentration versus time. Least-squares analysis gives:

$$\ln c = 0.831 - 7.21 \times 10^{-4} t$$

with a correlation coefficient of 0.998.

- (b) The half-life is given by $t_{1/2} = \frac{\ln 2}{k} = \frac{0.693}{7.21 \times 10^{-4}} = 961 \text{ s}$
- (c) To decrease the concentration to 25% of initial value would take 2 half-lives, since after $t_{1/2}$ the concentration would be 50% and after $2t_{1/2}$ it would be 50% of 50%. So the answer is 2×961 s = 1922 s.

Problem #2

A chemical reaction which has an activation energy of 167.0 kJ/mole is to proceed at T = 450 K with a very constant rate; the rate is allowed to vary at most by ±1%. How constant must the temperature be to achieve this required rate stability? (For T>> Δ T, T₁ x T₂ = T²)

Solution

$$\frac{k_1}{k_2} = 1.02 = e^{\frac{E_A}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)}$$

In $1.02 = \frac{E_A}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) = \frac{E_A}{R} \left(\frac{T_1 - T_2}{T_1 \times T_2}\right) = \frac{E_A}{R} \left(\frac{\Delta T}{T^2}\right)$
In $1.02 = \frac{E_A \Delta T}{RT^2}$
 $\Delta T = \frac{R \times T^2 \times \ln 1.02}{E_A} = 2.0 \times 10^{-1} \text{ K} = \pm 0.1 \text{ K}$

The required temperature stability is beyond the capabilities of conventional thermostats.

Problem #3

Determine the diffusivity D of lithium (Li) in silicon (Si) at 1200°C, knowing that $D_{1100^{\circ}C} = 10^{-5} \text{ cm}^2/\text{s}$ and $D_{695^{\circ}C} = 10^{-6} \text{ cm}^2/\text{s}$.

Solution

$$\frac{D_1}{D_2} = \frac{10^{-6}}{10^{-5}} = 10^{-1} = e^{-\frac{E_A}{R} \left(\frac{1}{968} - \frac{1}{1373}\right)}$$

$$E_A = \frac{R \ln 10}{\frac{1}{968} - \frac{1}{1373}} = 62.8 \text{ kJ/mole}$$

$$\frac{D_{1100}}{D_{1200}} = e^{-\frac{E_A}{R} \left(\frac{1}{1373} - \frac{1}{1473}\right)}$$

$$D_{1200} = 10^{-5} \times e^{\frac{E_A}{R} \left(\frac{1}{1373} - \frac{1}{1473}\right)} = 1.45 \times 10^{-5} \text{ cm}^2 \text{ / sec}$$

Problem #4

For a chemical reaction, the concentrations of reactant as a function of time are given below for 25°C and for 50°C.

at 25°C		at 50°C	
time (h)	conc. (mole/L)	time (min)	conc. (mole/L)
.00	0.1039	0	0.1056
3.15	0.0896	9	0.0961
10.00	0.0639	18	0.0856
13.50	0.0529	54	0.0536
26.00	0.0270	105	0.0270
37.30	0.0142	180	0.0089

- (a) Indicate schematically (in two different graphic presentations) how you could prove, given concentration data at certain times, that a reaction is of first order.
- (b) Determine, from graphic presentations, the rate constants (k) for the given reaction at 25°C and 50°C.
- (c) Determine the half-life $(t_{1/2})$ for the reaction at 50°C.
- (d) Determine the half-life $(t_{1/2})$ for the reaction at 70°C.
- (e) What is the time required for the reaction at 25°C to be completed to the extent of 42%?

Solution

(a) For the first order reactions:


```
(b) at 25^{\circ}C, k = 0.0533 hr<sup>-1</sup>
```


at 50°C, k = 0.0138 min⁻¹

(d) k = Ae^{$$-\frac{E_A}{RT}$$}

We need to determine A (and E_A):

$$\frac{k_{25}}{k_{50}} = e^{-\frac{E_A}{R}} \left(\frac{1}{T_{25}} - \frac{1}{T_{50}} \right)$$

$$k_{25} = 0.0533 \text{ hr}^{-1} \times \frac{1 \text{ hr}}{60 \text{ min}} = 8.88 \times 10^{-4} \text{ min}^{-1}$$

$$\ln \frac{k_{25}}{k_{50}} = \left(-\frac{E_A}{R} \right) \left(\frac{1}{T_{25}} - \frac{1}{T_{50}} \right)$$

$$E_A = \frac{-R \ln \left(\frac{k_{25}}{k_{50}} \right)}{\left(\frac{1}{T_{25}} - \frac{1}{T_{50}} \right)} = \frac{-8.3 \ln \left(\frac{8.88 \times 10^{-4}}{1.38 \times 10^{-2}} \right)}{\left(\frac{1}{298} - \frac{1}{323} \right)} = 87.7 \times 10^3 \text{ J/mole}$$

At 25°C: k = Ae^{$-\frac{E_A}{RT}$} A = k e^{$\frac{E_A}{RT}$} = (8.88×10⁻⁴) e^{$\left(\frac{8.77\times10^4}{8.31\times298}\right)$}

$$A = 2.22 \times 10^{12} \text{ m}^{-1}$$

So, at 70°C (343 K):

k = A e^{$$\frac{E_A}{RT}$$} = (2.22×10¹²) e ^{$-\left(\frac{8.77\times10^4}{8.31\times343}\right)$} = 9.28×10⁻² min⁻¹

and (finally!):

$$t_{1/2} = \frac{\ln 2}{k} = \frac{\ln 2}{9.28 \times 10^{-2} \text{ min}^{-1}} = 7.47 \text{ min}$$

(e) If the reaction is 42% complete, then 58% of the reactants remain. Therefore, c = 0.58 $c_{\rm o}.$

$$c = c_{o}e^{-kt} \rightarrow \ln\frac{c}{c_{o}} = -kt$$

$$t = -\frac{\ln\frac{c}{c_{o}}}{k} = -\frac{\ln\left(0.58\frac{c_{o}}{c_{o}}\right)}{0.0533 \text{ hr}^{-1}} = 10.22 \text{ hr} = 10 \text{ hr}, 13 \text{ min}, 12.1 \text{ sec}$$

Problem #5

In a chemical reaction the concentration of a rate-determining component is measured (in moles) at one minute intervals from zero to 5 minutes. The data are: 1.0×10^{-2} , 0.683×10^{-2} , 0.518×10^{-2} , 0.418×10^{-2} , 0.350×10^{-2} , and 0.301×10^{-2} .

- (a) Determine the order (n) of this reaction.
- (b) Determine the rate constant (k).
- (c) Determine the half-life of this reaction.

Solution

The graph indicates that the ln c vs time plot yields <u>almost</u> a straight line, but the 1/c plot <u>does</u> yield a straight line. This identifies the reaction as a 2nd order reaction.

(b) The rate constant (k) is given by the slope of the 1/c vs time plot:

$$k = \frac{332-146}{5-1} = 46.5 \frac{1}{\text{mole} \times \text{min}}$$

(c) The half life of a second-order reaction (given in class) can be simply obtained from the second order rate equation. It is:

$$\tau_{1/2} = \frac{1}{k \times c_{o}} = \frac{1}{46.5 \times 10^{-2}} = 2.15 \text{ min}$$

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.