Session \#23: Homework Solutions

Problem \#1

The decomposition of hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, can be represented by the following reaction:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}
$$

The table below reports data taken at room temperature (300 K).
Table 1. Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq)}}$ at 300 K .

conc $\mathrm{H}_{2} \mathrm{O}_{2}$ (mol/liter)	time (seconds)
2.32	0
2.01	200
1.72	400
1.49	600
0.98	1200
0.62	1800
0.25	3000

(a) Show that the reaction is first order.
(b) Calculate the value of the half-life of this reaction.
(c) Suppose that the initial concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ were 3.5 M . How long would it take at 300 K to reduce the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ to 25% of its initial value?

Solution

(a) To show that the reaction is first order, try fitting the logarithm of concentration versus time. Least-squares analysis gives:

$$
\ln c=0.831-7.21 \times 10^{-4} t
$$

with a correlation coefficient of 0.998 .
(b) The half-life is given by $\mathrm{t}_{1 / 2}=\frac{\ln 2}{\mathrm{k}}=\frac{0.693}{7.21 \times 10^{-4}}=961 \mathrm{~s}$
(c) To decrease the concentration to 25% of initial value would take 2 half-lives, since after $\mathrm{t}_{1 / 2}$ the concentration would be 50% and after $2 \mathrm{t}_{1 / 2}$ it would be 50% of 50%. So the answer is $2 \times 961 \mathrm{~s}=1922 \mathrm{~s}$.

Problem \#2

A chemical reaction which has an activation energy of $167.0 \mathrm{~kJ} / \mathrm{mole}$ is to proceed at $\mathrm{T}=450 \mathrm{~K}$ with a very constant rate; the rate is allowed to vary at most by $\pm 1 \%$. How constant must the temperature be to achieve this required rate stability? (For $\mathrm{T} \gg \Delta \mathrm{T}, \mathrm{T}_{1} \times \mathrm{T}_{2}=\mathrm{T}^{2}$)

Solution

$$
\begin{aligned}
& \frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=1.02=\mathrm{e}^{\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{R}}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)} \\
& \ln 1.02=\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{R}}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)=\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{R}}\left(\frac{\mathrm{~T}_{1}-T_{2}}{T_{1} \times T_{2}}\right)=\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{R}}\left(\frac{\Delta \mathrm{~T}}{\mathrm{~T}^{2}}\right) \\
& \ln 1.02=\frac{\mathrm{E}_{\mathrm{A}} \Delta \mathrm{~T}}{\mathrm{RT} T^{2}} \\
& \Delta T=\frac{R \times T^{2} \times \ln 1.02}{E_{A}}=2.0 \times 10^{-1} \mathrm{~K}= \pm 0.1 \mathrm{~K}
\end{aligned}
$$

The required temperature stability is beyond the capabilities of conventional thermostats.

Problem \#3

Determine the diffusivity D of lithium (Li) in silicon (Si) at $1200^{\circ} \mathrm{C}$, knowing that $D_{1100^{\circ} \mathrm{C}}=10^{-5} \mathrm{~cm}^{2} / \mathrm{s}$ and $\mathrm{D}_{695^{\circ} \mathrm{C}}=10^{-6} \mathrm{~cm}^{2} / \mathrm{s}$.

Solution

$$
\begin{aligned}
& \frac{D_{1}}{D_{2}}=\frac{10^{-6}}{10^{-5}}=10^{-1}=e^{-\frac{\mathrm{E}_{A}}{\mathrm{R}}\left(\frac{1}{968}-\frac{1}{1373}\right)} \\
& \mathrm{E}_{\mathrm{A}}=\frac{\mathrm{R} \ln 10}{\frac{1}{968}-\frac{1}{1373}}=62.8 \mathrm{~kJ} / \mathrm{mole} \\
& \frac{\mathrm{D}_{1100}}{\mathrm{D}_{1200}}=\mathrm{e}^{-\frac{\mathrm{E}_{A}}{\mathrm{R}}\left(\frac{1}{1373}-\frac{1}{1473}\right)} \\
& \mathrm{D}_{1200}=10^{-5} \times \mathrm{e}^{\frac{\mathrm{E}_{A}}{\mathrm{R}}\left(\frac{1}{1373}-\frac{1}{1473}\right)}=1.45 \times 10^{-5} \mathrm{~cm}^{2} / \mathrm{sec}
\end{aligned}
$$

Problem \#4

For a chemical reaction, the concentrations of reactant as a function of time are given below for $25^{\circ} \mathrm{C}$ and for $50^{\circ} \mathrm{C}$.

at $25^{\circ} \mathrm{C}$		at $50^{\circ} \mathrm{C}$	
time (h)	conc. (mole/L)	time (min)	conc. (mole/L)
.00	0.1039	0	0.1056
3.15	0.0896	9	0.0961
10.00	0.0639	18	0.0856
13.50	0.0529	54	0.0536
26.00	0.0270	105	0.0270
37.30	0.0142	180	0.0089

(a) Indicate schematically (in two different graphic presentations) how you could prove, given concentration data at certain times, that a reaction is of first order.
(b) Determine, from graphic presentations, the rate constants (k) for the given reaction at $25^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$.
(c) Determine the half-life $\left(\mathrm{t}_{1 / 2}\right)$ for the reaction at $50^{\circ} \mathrm{C}$.
(d) Determine the half-life $\left(\mathrm{t}_{1 / 2}\right)$ for the reaction at $70^{\circ} \mathrm{C}$.
(e) What is the time required for the reaction at $25^{\circ} \mathrm{C}$ to be completed to the extent of 42\%?

Solution

(a) For the first order reactions:

(b) at $25^{\circ} \mathrm{C}, \mathrm{k}=0.0533 \mathrm{hr}^{-1}$

at $50^{\circ} \mathrm{C}, \mathrm{k}=0.0138 \mathrm{~min}^{-1}$

(c) $t_{1 / 2}=\frac{\ln 2}{k}=\frac{\ln 2}{+0.0138}=50.2 \mathrm{~min}$
(d) $k=A e^{-\frac{E_{A}}{R T}}$

We need to determine $A\left(\right.$ and $\left.E_{A}\right)$:

$$
\begin{aligned}
& \frac{\mathrm{k}_{25}}{\mathrm{k}_{50}}=\mathrm{e}^{-\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{R}}}\left(\frac{1}{\mathrm{~T}_{25}}-\frac{1}{T_{50}}\right) \\
& \mathrm{k}_{25}=0.0533 \mathrm{hr}^{-1} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}}=8.88 \times 10^{-4} \mathrm{~min}^{-1} \\
& \ln \frac{\mathrm{k}_{25}}{\mathrm{k}_{50}}=\left(-\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{R}}\right)\left(\frac{1}{\mathrm{~T}_{25}}-\frac{1}{T_{50}}\right) \\
& \mathrm{E}_{\mathrm{A}}=\frac{-\mathrm{R} \ln \left(\frac{\mathrm{k}_{25}}{\mathrm{k}_{50}}\right)}{\left(\frac{1}{T_{25}}-\frac{1}{T_{50}}\right)}=\frac{-8.3 \ln \left(\frac{8.88 \times 10^{-4}}{1.38 \times 10^{-2}}\right)}{\left(\frac{1}{298}-\frac{1}{323}\right)}=87.7 \times 10^{3} \mathrm{~J} / \mathrm{mole}
\end{aligned}
$$

At $25^{\circ} \mathrm{C}: \mathrm{k}=\mathrm{Ae} \mathrm{e}^{-\frac{E_{A}}{\mathrm{RT}}}$

$$
\begin{aligned}
& A=k e^{\frac{E_{A}}{R T}}=\left(8.88 \times 10^{-4}\right) e^{\left(\frac{8.77 \times 10^{4}}{8.31 \times 298}\right)} \\
& A=2.22 \times 10^{12} \mathrm{~m}^{-1}
\end{aligned}
$$

So, at $70^{\circ} \mathrm{C}(343 \mathrm{~K})$:

$$
k=A e^{-\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{RT}}}=\left(2.22 \times 10^{12}\right) \mathrm{e}^{-\left(\frac{8.77 \times 10^{4}}{8.31 \times 343}\right)}=9.28 \times 10^{-2} \mathrm{~min}^{-1}
$$

and (finally!):

$$
\mathrm{t}_{1 / 2}=\frac{\ln 2}{\mathrm{k}}=\frac{\ln 2}{9.28 \times 10^{-2} \mathrm{~min}^{-1}}=7.47 \mathrm{~min}
$$

(e) If the reaction is 42% complete, then 58% of the reactants remain. Therefore, $\mathrm{c}=$ 0.58 c 。

$$
\begin{aligned}
& \mathrm{c}=\mathrm{c}_{\mathrm{o}} \mathrm{e}^{-k t} \rightarrow \ln \frac{\mathrm{c}}{\mathrm{c}_{\mathrm{o}}}=-\mathrm{kt} \\
& \mathrm{t}=-\frac{\ln \frac{\mathrm{c}}{\mathrm{c}_{0}}}{\mathrm{k}}=-\frac{\ln \left(0.58 \frac{\mathrm{c}_{0}}{\mathrm{c}_{0}}\right)}{0.0533 \mathrm{hr}^{-1}}=10.22 \mathrm{hr}=10 \mathrm{hr}, 13 \mathrm{~min}, 12.1 \mathrm{sec}
\end{aligned}
$$

Problem \#5

In a chemical reaction the concentration of a rate-determining component is measured (in moles) at one minute intervals from zero to 5 minutes. The data are: $1.0 \times 10^{-2}, 0.683 \times 10^{-2}, 0.518 \times 10^{-2}, 0.418 \times 10^{-2}, 0.350 \times 10^{-2}$ and 0.301×10^{-2}.
(a) Determine the order (n) of this reaction.
(b) Determine the rate constant (k).
(c) Determine the half-life of this reaction.

Solution

(a)

The graph indicates that the In c vs time plot yields almost a straight line, but the $1 / c$ plot does yield a straight line. This identifies the reaction as a $2^{\text {nd }}$ order reaction.
(b) The rate constant (k) is given by the slope of the $1 / \mathrm{c}$ vs time plot:

$$
k=\frac{332-146}{5-1}=46.5 \frac{1}{\mathrm{~mole} \times \min }
$$

(c) The half life of a second-order reaction (given in class) can be simply obtained from the second order rate equation. It is:

$$
\tau_{1 / 2}=\frac{1}{k \times c_{0}}=\frac{1}{46.5 \times 10^{-2}}=2.15 \mathrm{~min}
$$

MIT OpenCourseWare
http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry

 Fall 2009For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

