Session \#17-Homework Solutions

Problem \#1

You are operating an x-ray tube with a chromium (Cr) target by applying an acceleration potential (V) of 60 kV . Draw a schematic of the x -ray spectrum emitted by this tube; label on it three characteristic $\lambda \mathrm{s}$ and give the numerical value of two of these.

Solution

A characteristic x-ray spectrum of Cr will show $\lambda_{\text {SWL }}, \mathrm{K}_{\beta}, \mathrm{K}_{\alpha}$ and the continuous spectrum or Bremsstrahlung. We may quantify $\lambda_{\mathrm{K}_{\alpha}}$ and λ_{swL}.

$$
\begin{aligned}
&{ }_{24} \mathrm{Cr}: \quad \bar{v}_{\mathrm{K}_{\alpha}}=\frac{3}{4} \mathrm{R}(\mathrm{Z}-1)^{2}=\frac{3}{4} \times 1.097 \times 10^{7}(23)^{2}=4.35 \times 10^{9} \mathrm{~m}^{-1} \\
& \lambda_{\mathrm{K}_{\alpha}}=2.3 \times 10^{-10} \mathrm{~m} \\
& \lambda_{\mathrm{SWL}}=\frac{\mathrm{hc}}{\mathrm{eV}}=\frac{1.24 \times 10^{-6} \mathrm{~m}}{6 \times 10^{4}}=2.07 \times 10^{-11} \mathrm{~m}
\end{aligned}
$$

Problem \#2

(a) An X-ray tube with a silver (Ag) target at a plate voltage of 66 kV . Calculate the value of $\lambda_{\text {SWL }}$, the shortest wavelength.
(b) Sketch the emission spectrum (intensity vs. wavelength) of the Ag target in part (a). On your sketch, indicate the relative positions of the $\mathrm{K}_{\alpha}, \mathrm{K}_{\beta}, \mathrm{L}_{\alpha}$, and L_{β} lines and $\lambda_{\text {SWL }}$. It is not necessary to calculate the λ values of the K_{β}, L_{α}, and L_{β} lines.
(c) In one or two sentences explain the origin of the continuous spectrum.

Solution

(a) $\lambda_{\mathrm{SWL}}=\frac{\mathrm{hc}}{\mathrm{eV}}=\frac{12400}{66 \times 10^{3}}=0.188 \AA$
(b) See sketch above in answer to problem \#1. The L_{α} and L_{β} lines will appear to the right of the analogous K lines (at higher values of λ), the L_{α} to the right of the L_{β}.
(c) Incident electrons are deflected by the negative charge of electrons in the target. Any change in velocity (speed or direction or both) is an acceleration. Accelerating a charge emits radiation. The deflected electrons' acceleration is NOT QUANTIZED. Thus, the spectrum is continuous.

Problem \#3

Determine the wavelength of $\lambda_{\mathrm{K}_{\alpha}}$ for molybdenum (Mo).

Solution

Mo: $Z=42 ; K_{\alpha} \rightarrow n_{i}=2 ; n_{f}=1 ; \sigma=1$
$\bar{v}_{K_{\alpha}}=R(Z-1)^{2}\left[\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right]$
$\bar{v}_{K_{\alpha}}=1.097 \times 10^{7}\left[\frac{1}{m}\right](42-1)^{2}\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right]$
$\bar{v}_{\mathrm{K}_{\alpha}}=1.38 \times 10^{10} \mathrm{~m}^{-1}$
$\lambda_{\mathrm{K}_{\alpha}}=\frac{1}{\overline{\mathrm{v}}_{\mathrm{K}_{\alpha}}}=7.25 \times 10^{-11} \mathrm{~m}$

Problem \#4

Identify the element giving rise to K_{α} with $\lambda=2.51 \times 10^{-10} \mathrm{~m}$.

Solution

$$
\begin{aligned}
& \frac{1}{\lambda_{\mathrm{K}_{\alpha}}}=\bar{v}_{\mathrm{K}_{\alpha}}=\mathrm{R}(\mathrm{Z}-1)^{2}\left[\frac{1}{\mathrm{n}_{\mathrm{f}}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}\right]=\mathrm{R}(\mathrm{Z}-1)^{2} \times \frac{3}{4} \\
& (\mathrm{Z}-1)=\sqrt{\frac{4}{3 \times \lambda \times \mathrm{R}}}=22 \\
& \mathrm{Z}=23 \text { (Vanadium) }
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry
 Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

