Session #17 - Homework Solutions

Problem #1

You are operating an x-ray tube with a chromium (Cr) target by applying an acceleration potential (V) of 60 kV. Draw a schematic of the x-ray spectrum emitted by this tube; label on it three characteristic λ s and give the numerical value of two of these.

Solution

A characteristic x-ray spectrum of Cr will show λ_{SWL} , K_{β} , K_{α} and the continuous spectrum or Bremsstrahlung. We may quantify $\lambda_{K_{\alpha}}$ and λ_{SWL} .

$$z_{4}Cr: \quad \overline{v}_{K_{\alpha}} = \frac{3}{4}R(Z-1)^{2} = \frac{3}{4} \times 1.097 \times 10^{7} (23)^{2} = 4.35 \times 10^{9} \text{ m}^{-1}$$

$$\lambda_{K_{\alpha}} = 2.3 \times 10^{-10} \text{ m}$$

$$\lambda_{SWL} = \frac{hc}{eV} = \frac{1.24 \times 10^{-6} \text{ m}}{6 \times 10^{4}} = 2.07 \times 10^{-11} \text{ m}$$
intensity
$$intensity$$

$$\lambda_{SWL} = \frac{kc}{k_{\beta}} = \frac{kc}{k_{\beta}} = \frac{kc}{k_{\beta}} = \frac{kc}{k_{\beta}}$$

Problem #2

- (a) An X-ray tube with a silver (Ag) target at a plate voltage of 66 kV. Calculate the value of λ_{SWL} , the shortest wavelength.
- (b) Sketch the emission spectrum (intensity vs. wavelength) of the Ag target in part (a). On your sketch, indicate the relative positions of the K_{α}, K_{β}, L_{α}, and L_{β} lines and λ_{SWL} . It is not necessary to calculate the λ values of the K_{β}, L_{α}, and L_{β} lines.
- (c) In one or two sentences explain the origin of the continuous spectrum.

Solution

(a)
$$\lambda_{SWL} = \frac{hc}{eV} = \frac{12400}{66 \times 10^3} = 0.188 \text{ Å}$$

- (b) See sketch above in answer to problem #1. The L_{α} and L_{β} lines will appear to the right of the analogous K lines (at higher values of λ), the L_{α} to the right of the L_{β}.
- (c) Incident electrons are deflected by the negative charge of electrons in the target. Any change in velocity (speed or direction or both) is an acceleration. Accelerating a charge emits radiation. The deflected electrons' acceleration is NOT QUANTIZED. Thus, the spectrum is continuous.

Problem #3

Determine the wavelength of $\lambda_{K_{\alpha}}$ for molybdenum (Mo).

Solution

Mo: Z = 42;
$$K_{\alpha} \rightarrow n_{i}=2; n_{f}=1; \sigma=1$$

 $\overline{v}_{K_{\alpha}} = R(Z - 1)^{2} \left[\frac{1}{n_{f}^{2}} - \frac{1}{n_{i}^{2}} \right]$
 $\overline{v}_{K_{\alpha}} = 1.097 \times 10^{7} \left[\frac{1}{m} \right] (42 - 1)^{2} \left[\frac{1}{1^{2}} - \frac{1}{2^{2}} \right]$
 $\overline{v}_{K_{\alpha}} = 1.38 \times 10^{10} \text{ m}^{-1}$
 $\lambda_{K_{\alpha}} = \frac{1}{\overline{v}_{K_{\alpha}}} = 7.25 \times 10^{-11} \text{ m}$

Problem #4

Identify the element giving rise to K_{α} with $\lambda = 2.51 \times 10^{-10}$ m.

Solution

$$\frac{1}{\lambda_{K_{\alpha}}} = \overline{v}_{K_{\alpha}} = R(Z - 1)^2 \left[\frac{1}{n_f^2} - \frac{1}{n_i^2} \right] = R(Z - 1)^2 \times \frac{3}{4}$$
$$(Z - 1) = \sqrt{\frac{4}{3 \times \lambda \times R}} = 22$$

Z = 23 (Vanadium)

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.