Session \#24: Homework Solutions

Problem \#1

To increase its corrosion resistance, chromium (Cr) is diffused into steel at $980^{\circ} \mathrm{C}$. If during diffusion the surface concentration of chromium remains constant at 100\%, how long will it take (in days) to achieve a Cr concentration of 1.8% at a depth of 0.002 cm below the steel surface? ($\left.D_{0}=0.54 \mathrm{~cm}^{2} / \mathrm{s} ; \mathrm{E}_{\mathrm{A}}=286 \mathrm{~kJ} / \mathrm{mol}\right)$

Solution

A solution to Fick's second law for the given boundary conditions is:
$\frac{c}{c_{s}}=1-\operatorname{erf} \frac{x}{2 \sqrt{D t}}$, from which we get erf $\frac{x}{2 \sqrt{D t}}=1-0.018=0.982$
From the error function tables, 0.982 is the erf of 1.67. This means that

$$
\begin{aligned}
& \frac{0.002}{2 \sqrt{D t}}=\frac{0.001}{\sqrt{D t}}=1.67 \\
& D=D_{o} e^{\left(\frac{-286 \times 10^{5}}{8.314 \times 1253}\right)}=6.45 \times 10^{-13} \mathrm{~cm}^{2} / \mathrm{s} \\
& \therefore \mathrm{t}=\frac{0.001^{2}}{1.67^{2} \times 6.45 \times 10^{-13}}=5.56 \times 10^{5} \mathrm{sec}=6.4 \text { days }
\end{aligned}
$$

Problem \#2

By planar diffusion of antimony (Sb) into p-type germanium (Ge), a p-n junction is obtained at a depth of $3 \times 10^{-3} \mathrm{~cm}$ below the surface. What is the donor concentration in the bulk germanium if diffusion is carried out for three hours at $790^{\circ} \mathrm{C}$? The surface concentration of antimony is held constant at a value of 8×10^{18} $\mathrm{cm}^{-3} ; \mathrm{D}_{790^{\circ} \mathrm{C}}=4.8 \times 10^{-11} \mathrm{~cm}^{2} / \mathrm{s}$.

Solution

$$
\begin{aligned}
& \frac{c}{c_{s}}=\operatorname{erfc} \frac{x}{2 \sqrt{D t}}=\operatorname{erfc} \frac{3 \times 10^{-3}}{2 \sqrt{D t}}=\operatorname{erfc}(2.083) \\
& \frac{c}{c_{s}}=1-\operatorname{erf}(2.083), \quad \therefore 1-\frac{c}{c_{s}}=0.9964 \\
& \frac{c}{c_{s}}=3.6 \times 10^{-3}, \quad \therefore \quad c=2.88 \times 10^{16} \mathrm{~cm}^{-3}
\end{aligned}
$$

The donor concentration in germanium is $2.88 \times 10^{16} / \mathrm{cm}^{3}$.

Problem \#3

You wish to dope a single crystal of silicon (Si) with boron (B). The specification reads 5×10^{16} boron atoms $/ \mathrm{cm}^{3}$ at a depth of $25 \mu \mathrm{~m}$ from the surface of the silicon. What must be the effective concentration of boron in units of atoms $/ \mathrm{cm}^{3}$ if you are to meet this specification within a time of 90 minutes? Assume that initially the concentration of boron in the silicon crystal is zero. The diffusion coefficient of boron in silicon has a value of $7.23 \times 10^{-9} \mathrm{~cm}^{2} / \mathrm{s}$ at the processing temperature.

Solution

$$
\begin{aligned}
& c(x, t)=A+B \operatorname{erf} \frac{x}{2 \sqrt{D t}} ; c(0, t)=c_{s}=A ; c(x, 0)=c_{i}=0 \\
& c(\infty, t)=c_{i}=0=A+B \rightarrow A=-B \\
& \therefore c(x, t)=c_{s}-c_{s} \operatorname{erf} \frac{x}{2 \sqrt{D t}}=c_{s} \operatorname{erfc} \frac{x}{2 \sqrt{D t}} \rightarrow 5 \times 10^{16}=c_{s} \operatorname{erfc} \frac{25 \times 10^{-4}}{2 \sqrt{7.23 \times 10^{-9} \times 90 \times 60}} \\
& \therefore c_{s}=\frac{5 \times 10^{16}}{\operatorname{erfc} \frac{25 \times 10^{-4}}{2 \sqrt{7.23 \times 10^{-9} \times 5400}}}=6.43 \times 10^{16} \mathrm{~cm}^{-3} \\
& \operatorname{erfc}(0.20)=1-\operatorname{erf}(0.20)=1-0.2227=0.7773
\end{aligned}
$$

Problem \#4

A slab of plate glass containing dissolved helium (He) is placed in a vacuum furnace at a temperature of $400^{\circ} \mathrm{C}$ to remove the helium from the glass. Before vacuum treatment, the concentration of helium is constant throughout the glass. After 10 minutes in vacuum at $400^{\circ} \mathrm{C}$, at what depth from the surface of the glass has the concentration of helium decreased to $1 / 3$ of its initial value? The diffusion coefficient of helium in the plate glass at the processing temperature has a value of $3.091 \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{s}$.

Solution

$$
\begin{aligned}
& c=A+B \operatorname{erf} \frac{x}{2 \sqrt{D t}} ; c(0, t)=0=A ; c(\infty, t)=c_{0}=B \\
& \therefore c(x, t)=c_{0} \operatorname{erf} \frac{x}{2 \sqrt{D t}}
\end{aligned}
$$

What is x when $\mathrm{c}=\mathrm{c}_{\mathrm{o}} / 3$?

$$
\begin{aligned}
& \frac{c_{0}}{3}=c_{0} \operatorname{erf} \frac{x}{2 \sqrt{D t}} \rightarrow 0.33=\operatorname{erf} \frac{x}{2 \sqrt{D t}} ; \operatorname{erf}(0.30)=0.3286 \approx 0.33 \\
\therefore & \frac{x}{2 \sqrt{D t}}=0.30 \rightarrow x=2 \times 0.30 \times \sqrt{3.091 \times 10^{-6} \times 10 \times 60}=2.58 \times 10^{-2} \mathrm{~cm}=258 \mu \mathrm{~m}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry

 Fall 2009For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

