Session #25: Homework Problems

Problem #1

Bi₂S₃ dissolves in water according to the following reaction:

 Bi_2S_3 (s) \Leftrightarrow 2 Bi ³⁺ (aq) + 3 S²⁻ (aq)

for which the solubility product, K_{sp} , has the value of 1.6×10^{-72} at room temperature.

- (a) At room temperature how many moles of Bi_2S_3 will dissolve in 3.091 \times 10^6 liters of water?
- (b) How many Bi³⁺ ions will be found in the solution described in part (a)?

Problem #2

Calculate the volume of 0.25 M NaI that would be needed to precipitate all the Hg^{2+} ion from 45 mL of a 0.10 M $Hg(NO_3)_2$ solution according to the following reaction:

 $2 \operatorname{Nal}(aq) + \operatorname{Hg}(\operatorname{NO}_3)_2(aq) \rightarrow \operatorname{Hgl}_2(s) + 2 \operatorname{NaNO}_3(aq)$

Problem #3

molarity.

- (a) Strontium fluoride, SrF₂, has a K_{sp} value in water of 2.45 \times 10⁻⁹ at room temperature. Calculate the solubility of SrF₂ in water. Express your answer in units of
- (b) Calculate the solubility of SrF_2 in 0.03 M NaF *(aq)*. Express your answer in units of molarity. Assume that NaF is completely dissociated in water.

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.