Welcome to 3.091

Lecture 18

October 21, 2009

X-Ray Diffraction Techniques

Moseley's Law

$$\left(\frac{1}{n_{\rm f}^2} - \frac{1}{n_{\rm i}^2}\right) \left(Z - \sigma\right)^2$$

Averill, B., and P. Eldredge. Chemistry: Principles, Patterns, and Applications. Flat World Knowledge, 2011. ISBN: 9781453331224.

Selection Rules for Reflection in Cubic Crystals

(hkl)	$h^2 + k^2 + l^2$	SC (BCC	FCC	
100	1		*	*	
110	2		√	×	
111	3		×		
200	4	✓ all	√ _h	+k+1 $h+k+1$	
210	5		×	* 11	
211	6		√ (even all even	
220	8			√or all ode	d
300	9		×	* unmixed	1
310	10			×	
311	11		×		
222	12				
320	13		×	×	
321	14		√	×	
400	16		√		

diffractometry

 2θ

44.48

51.83

76.35

92.90

98.40

121.87

144.54

155.51

Step 1 Start with 2θ values and generate a set of $\sin^2\theta$ values.

2θ	$\sin^2\theta$
44.48	0.143
51.83	0.191
76.35	0.382
92.90	0.525
98.40	0.573
121.87	0.764
144.54	0.907
155.51	0.955

- Step 1 Start with 2θ values and generate a set of $\sin^2\theta$ values.
- Step 2 Normalize the $\sin^2\theta$ values by generating $\sin^2\theta_n / \sin^2\theta_1$.

20	$\sin^2\theta$	normalized
		4 0 0
44.48	0.143	1.00
51.83	0.191	1.34
76.35	0.382	2.67
92.90	0.525	3.67
98.40	0.573	4.01
121.87	0.764	5.34
144.54	0.907	6.34
155.51	0.955	6.68

- Step 1 Start with 2θ values and generate a set of $\sin^2\theta$ values.
- Step 2 Normalize the $\sin^2\theta$ values by generating $\sin^2\theta_n / \sin^2\theta_1$.
- Step 3 Clear fractions from "normalized" column.

20	$\sin^2\theta$	normalized	clear
		f	ractions
44.48	0.143	1.00	3
51.83	0.191	1.34	4
76.35	0.382	2.67	8
92.90	0.525	3.67	11
98.40	0.573	4.01	12
121.87	0.764	5.34	16
144.54	0.907	6.34	19
155.51	0.955	6.68	20

- Step 1 Start with 2θ values and generate a set of $\sin^2\theta$ values.
- Step 2 Normalize the $\sin^2\theta$ values by generating $\sin^2\theta_n / \sin^2\theta_1$.
- Step 3 Clear fractions from "normalized" column.
- Step 4 Speculate on the hkl values that, if expressed as $h^2+k^2+l^2$, would generate the sequence of the "clear fractions" column.

2θ	$\sin^2\theta$	normalized	clear	(hkl)?
		f	raction	IS
44.48	0.143	1.00	3	111
51.83	0.191	1.34	4	200
76.35	0.382	2.67	8	220
92.90	0.525	3.67	11	311
98.40	0.573	4.01	12	222
121.87	0.764	5.34	16	400
144.54	0.907	6.34	19	331
155.51	0.955	6.68	20	420

- Step 1 Start with 2θ values and generate a set of $\sin^2\theta$ values.
- Step 2 Normalize the $\sin^2\theta$ values by generating $\sin^2\theta_n / \sin^2\theta_1$.
- Step 3 Clear fractions from "normalized" column.
- Step 4 Speculate on the hkl values that, if expressed as $h^2+k^2+l^2$, would generate the sequence of the "clear fractions" column.
- Step 5 Compute for each θ the value of $\sin^2\theta / (h^2 + k^2 + l^2)$ on the basis of the assumed *hkl* values. If each entry in this column is identical, then the entire process is validated.

20	$\sin^2\theta$	normalized	clear	(hkl)?	$\frac{\sin^2\theta}{h^2 + k^2 + l^2}$
		f	raction	IS	
44.48	0.143	1.00	3	111	0.0477
51.83	0.191	1.34	4	200	0.0478
76.35	0.382	2.67	8	220	0.0478
92.90	0.525	3.67	11	311	0.0477
98.40	0.573	4.01	12	222	0.0478
121.87	0.764	5.34	16	400	0.0477
144.54	0.907	6.34	19	331	0.0477
155.51	0.955	6.68	20	420	0.0478

Selection Rules for Reflection in Cubic Crystals

(hkl)	$h^2+k^2+l^2$	SC	BCC	FCC
100	1		×	×
110	2			×
111	3		×	
200	4			
210	5		×	×
211	6			×
220	8			
300	9		×	×
310	10			×
311	11		×	
222	12			
320	13		×	×
321	14			×
400	16			

Averill, B., and P. Eldredge. Chemistry: Principles, Patterns, and Applications. Flat World Knowledge, 2011. ISBN: 9781453331224.

All M. C. Escher works © 2010. The M. C. Escher Company – The Netherlands. All rights reserved. www.mcescher.com

All M. C. Escher works © 2010. The M. C. Escher Company – The Netherlands. All rights reserved. www.mcescher.com

3-fold 3-muetry

120° rotation

All M. C. Escher works © 2010 The M. C. Escher Company – The Netherlands. All rights reserved. www.mcescher.com

4-fold

4-fold

3-fold

90°

4-fold 3-fold 2-fold

90°

120°

All M. C. Escher works © 2010 The M. C. Escher Company – The Netherlands. All rights reserved. www.mcescher.com

translational symmetry without rotational symmetry

Courtesy of Ron Lifshitz. Used with permission.

not a Bravais lattice

Taxonomy of Solids

<u>ordered</u> <u>disordered</u>

unit cellno building block

periodic
no long-range order

- "crystal" - "glass"

1982 Dan Schechtman (Technion) working at National Institute of Standards and Technology (NIST), Gaithersburg, MD

Al - Mn alloy:

- highly ordered
- symmetries impossible in a true crystal (5-fold rotational symmetry)
- lacks translational symmetry: aperiodic

"quasicrystals"

5-fold

72°

2372532 027	PITT	171
		12
	2057	13
17 26	1717	171
24	810	171
1727	9171	17
		11
0:0		17
1 .01158		17 2
		17
1727		173
		. 13
		13:
		13
		13
		137
		17:
		173
		173
		17:
		17
		17
		171
		1
Courtesy of Dan Shechtman. Used with permission.		12:3

STATISTINGS WEST- PA

1720	540
1721	SAD
1722	28k
1723	1710
1724	9 36k
1725	\$AD (10 Fold ???)
1126	1 36 k DF
1727	9 36k Of
1728	634 pt
1729	1º364 DE
1130	51D 2300
1731	9 11 1600
1332	9 36K BF
1333	0 100 h B5
1334	& look Be
1735	6 10 K BF
1736	sap another ptole.
1737	9 M diff 800
1738	6 half 1600
1739	6/4 10 "
1740	SAD another area
1741	13 k
1742	ITK

5-fold

72°

"Mission Impossible" - an example of 5:4 time

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.