Welcame to 3.091

Lecture 18

October 21, 2009

X-Ray Diffraction Techniques

$$
\lambda_{\mathrm{sWl}}=\begin{aligned}
& \text { Mo target } \\
& \text { chantinuous } \\
& \text { chacteristic } \\
& \text { radiation }
\end{aligned}
$$

Image by MIT OpenCourseWare.

Averill, B., and P. Eldredge.
.Flat World Knowledge, 2011. ISBN: 9781453331224.

Selection Rules for Reflection in Cubic Crystals

(hkl)	$h^{2}+k^{2}+l^{2}$	(SC)	BCC	(FCC)
100	1	\checkmark	\%	*
110	2	\checkmark	\checkmark	\%
111	3	\checkmark	x	\checkmark
200	4	\checkmark all		+k+ $\mathbf{~} \mathrm{h}+\mathrm{k}+1$
210	5	\checkmark	\boldsymbol{X}	\boldsymbol{x}
211	6	\checkmark	\checkmark	even: all even
220	8	\checkmark	\checkmark	\checkmark or all odd
300	9	\checkmark	\%	x unmixed
310	10	\checkmark	\checkmark	\%
311	11	\checkmark	X	\checkmark
222	12	\checkmark	\checkmark	\checkmark
320	13	\checkmark	X	X
321	14	\checkmark	\checkmark	X
400	16	\checkmark	\checkmark	\checkmark

diffractometry

Cu target, $\lambda_{\mathrm{K}_{\alpha}}=1.5418 \AA$
2θ
44.48
51.83
76.35
92.90
98.40
121.87
144.54
155.51

Sadoway's Five-step Program for Determining Crystal Structure

Step 1 Start with 2θ values and generate a set of $\sin ^{2} \theta$ values.

Cu target, $\lambda_{\mathrm{K}_{\alpha}}=1.5418 \AA$
$2 \theta \quad \sin ^{2} \theta$

44.48	0.143
51.83	0.191
76.35	0.382
92.90	0.525
98.40	0.573
121.87	0.764
144.54	0.907
155.51	0.955

Sadoway's Five-step Program for Determining Crystal Structure

Step 1 Start with 2θ values and generate a set of $\sin ^{2} \theta$ values.

Step 2 Normalize the $\sin ^{2} \theta$ values by generating $\sin ^{2} \theta_{n} / \sin ^{2} \theta_{1}$.

Cu target, $\lambda_{\mathrm{K}_{\alpha}}=1.5418 \AA$
$2 \theta \quad \sin ^{2} \theta \quad$ normalized

44.48	0.143	1.00
51.83	0.191	1.34
76.35	0.382	2.67
92.90	0.525	3.67
98.40	0.573	4.01
121.87	0.764	5.34
144.54	0.907	6.34
155.51	0.955	6.68

Sadoway's Five-step Program for Determining Crystal Structure

Step 1 Start with 2θ values and generate a set of $\sin ^{2} \theta$ values.

Step 2 Normalize the $\sin ^{2} \theta$ values by generating $\sin ^{2} \theta_{\mathrm{n}} / \sin ^{2} \theta_{1}$.

Step 3 Clear fractions from "normalized" column.

Cu target, $\lambda_{\mathrm{K}_{\alpha}}=1.5418 \AA$
$2 \theta \quad \sin ^{2} \theta$ normalized clear
fractions

44.48	0.143	1.00	3
51.83	0.191	1.34	4
76.35	0.382	2.67	8
92.90	0.525	3.67	11
98.40	0.573	4.01	12
121.87	0.764	5.34	16
144.54	0.907	6.34	19
155.51	0.955	6.68	20

Sadoway's Five-step Program for Determining Crystal Structure

Step 1 Start with 2θ values and generate a set of $\sin ^{2} \theta$ values.

Step 2 Normalize the $\sin ^{2} \theta$ values by generating $\sin ^{2} \theta_{\mathrm{n}} / \sin ^{2} \theta_{1}$.

Step 3 Clear fractions from "normalized" column.

Step 4 Speculate on the $h k l$ values that, if expressed as $h^{2}+k^{2}+l^{2}$, would generate the sequence of the "clear fractions" column.

Cu target, $\lambda_{\mathrm{K}_{\alpha}}=1.5418 \AA$
$2 \theta \quad \sin ^{2} \theta$ normalized clear (hkl)?
fractions

44.48	0.143	1.00	3	111
51.83	0.191	1.34	4	200
76.35	0.382	2.67	8	220
92.90	0.525	3.67	11	311
98.40	0.573	4.01	12	222
121.87	0.764	5.34	16	400
144.54	0.907	6.34	19	331
155.51	0.955	6.68	20	420

Sadoway's Five-step Program for Determining Crystal Structure

Step 1 Start with 2θ values and generate a set of $\sin ^{2} \theta$ values.

Step 2 Normalize the $\sin ^{2} \theta$ values by generating $\sin ^{2} \theta_{n} / \sin ^{2} \theta_{1}$.

Step 3 Clear fractions from "normalized" column.

Step 4 Speculate on the $h k l$ values that, if expressed as $h^{2}+k^{2}+l^{2}$, would generate the sequence of the "clear fractions" column.

Step 5 Compute for each θ the value of $\sin ^{2} \theta /\left(h^{2}+k^{2}+l^{2}\right)$ on the basis of the assumed $h k l$ values. If each entry in this column is identical, then the entire process is validated.

Cu target, $\lambda_{\mathrm{K}_{\alpha}}=1.5418 \AA$
$2 \theta \quad \sin ^{2} \theta \quad$ normalized clear (hkl)? $\quad \frac{\sin ^{2} \theta}{h^{2}+k^{2}+l^{2}}$ fractions

44.48	0.143	1.00	3	111	0.0477
51.83	0.191	1.34	4	200	0.0478
76.35	0.382	2.67	8	220	0.0478
92.90	0.525	3.67	11	311	0.0477
98.40	0.573	4.01	12	222	0.0478
121.87	0.764	5.34	16	400	0.0477
144.54	0.907	6.34	19	331	0.0477
155.51	0.955	6.68	20	420	0.0478

Selection Rules for Reflection in Cubic Crystals

(hkl)	$h^{2}+k^{2}+l^{2}$	SC	BCC	FCC
100	1	\checkmark	\boldsymbol{x}	$\boldsymbol{\chi}$
110	2	\checkmark	\checkmark	x
111	3	\checkmark	X	\checkmark
200	4	\checkmark	\checkmark	\checkmark
210	5	\checkmark	x	x
211	6	\checkmark	\checkmark	\boldsymbol{x}
220	8	\checkmark	\checkmark	\checkmark
300	9	\checkmark	\%	\mathfrak{x}
310	10	\checkmark	\checkmark	\mathfrak{N}
311	11	\checkmark	\%	\checkmark
222	12	\checkmark	\checkmark	\checkmark
320	13	\checkmark	\%	\boldsymbol{x}
321	14	\checkmark	\checkmark	$\boldsymbol{\chi}$
400	16	\checkmark	\checkmark	\checkmark

All M. C. Escher works © 2010. The M. C. Escher Company - The Netherlands. All rights reserved.

All M. C. Escher works © 2010. The M. C. Escher Company - The Netherlands. All rights reserved.

All M. C. Escher works © 2010. The M. C. Escher Company - The Netherlands. All rights reserved.

120° rotation

All M. C. Escher works © 2010 The M. C. Escher Company - The Netherlands. All rights reserved.

4-fold

90°

4-fold
 3-fold

$90^{\circ} \quad 120^{\circ}$

4-fold
 3-fold
 2-fold

$\begin{array}{lll}90^{\circ} & 120^{\circ} & 180^{\circ}\end{array}$

Taxonomy of Solids

ordered

- unit cell
- periodic
- "crystal"

disordered

- no building block
- no long-range order
- "glass"

1982 Dan Schechtman (Technion) working at National Institute of Standards and Technology (NIST), Gaithersburg, MD

Al - Mn alloy:

- highly ordered
- symmetries impossible in a true crystal (5-fold rotational symmetry)
- lacks translational symmetry: aperiodic

5-fold

72^{0}
Courtesy of Dan Shechtman. Used with permission.

5-fold
72^{0}
"Mission Impossible" - an example of 5:4 time

MIT OpenCourseWare
http://ocw.mit.edu
3.091SC Introduction to Solid State Chemistry

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

