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Questions about solutions for Exam 1 

Statistical Mechanics: Introduction 

Classical Thermodynamics 

Macroscopic Theory • 

Provides simple connections between different macroscopic properties of systems. • 

It is independent of the atomistic interpretation of reality. • 

In order to be useful, Thermodynamics requires experimental input. • 

TD doesn’t offer mechanistic interpretation of the system. • 

Statistical Mechanics 

Provides a microscopic description of systems. • 

Statistical Mechanics constitutes a link between the Quantum Mechanical description of a • 
system and its Thermodynamic Properties. 

Generates a more intuitive interpretation of system. • 

Enables a first principles prediction of thermodynamic properties. • 

Degeneracy 
Consider the energy states of a particle in a three­dimensional infinite well of dimensions 

a × a × a. 

From quantum mechanics, the energy of such a system is defined as (eq. 1­33 of McQuarrie): 
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where nx, ny , nz are integers from 1 to infinity. 

The degeneracy is given by the number of ways that the integer M = frac8ma2h2 can be 
written as the sum of the squares of three positive integers. If you consider a 3− D space spanned �1/2� 

8ma2εby nx, ny , nz , Eq. 1 represents a sphere with radius R = 
h2 . 

To calculate the degeneracy of this system, we need to calculate the number of states with en­
ergy ε, corresponding to the radius R of the sphere. For large numbers, it is possible to treat R as 
a continuous variable and then define the degeneracy of the system as the number of states within 



the interval ε, ε + �ε, where �ε << 1:
ε 

2 
�3/2 

ω (ε, �ε) = 
π 

� 
8ma

ε1/2 �ε + O 
�
(�ε)2� 

(2)
4 h2 

With ε = 3kT/2, T = 300 K, m = 10 ×−22 g, a = 10 cm and �ε = 0.01ε, we obtain: 

ω (ε, �ε) = O 
�
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This is just for one particle!!! 

For N particles ∼ 1023 , 

Ω (E, �E) = O 
�
101023 

� 
(4) 

The concept of degeneracy, Ω (E) is very important in statistical mechanics. As we will see 
later on, the partition function for a Canonical Ensemble, Q(N, V, T ) is given by: 
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Ideas behind Stat. Mech.The observation time of macroscopic properties of system is much 
longer than the time­scale at which the atomic components of the system change their state. 

Macroscopic Thermodynamic properties of systems are time averages of the instantaneous 
states of the system, considered from the microscopic point of view: 

1 
�

¯U = E = E (�r (t) , �p (t))dt 
Δt 

Δt 

1 
�

¯U = E = ψ (� q, t) dtq, t) H ψ (�
Δt 

� | | � 
Δt 

The integrals above state that thermodynamically defined properties, such as the internal en­
ergy of a system U , are time averages of the instantaneous microscopic properties of the system. 

In practice, however, the calculation of these time integrals is not possible (N = O(1023)). 
This is where Statistical Mechanics becomes useful. 

POSTULATE I: Within �t, all possible states that a system can take are sampled. 



� 

� 

In this case, the time average of thermodynamic properties is equivalent to the weighted average 
over all possible states that the system can be in: 

¯ p)P (�r, � pU = E = E (�r, � p) d�rd�

� pr,�

where P (� p) is the probability distribution. r, �

POSTULATE II: Every possible state for an isolated system is equally probable and it should 
be given equal weight. 

The main problem of Statistical Mechanics is to find Pν for the given thermodynamic boundary 
conditions imposed on the systems under study. 

Mechanical/Non­mechanical Properties 
Mechanical properties in statistical mechanics are defined as the properties that can be readily 

found from the solution of the Schr¨dinger equation Hψ = Eψ, such as E, p, etc. For these proper­
ties, the thermodynamic, macroscopic variables can be established through the time or phase­space 
integration of the microscopic, instantaneous properties: 

¯ p)P (�r, � pU = E = E (�r, � p) d�rd�
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or 
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Non­mechanical properties are those that require the introduction of temperature for their def­
inition, such as S. In order to obtain the statistical mechanic definitions of these properties, it is 
necessary to establish the relationship between T.D. and S. M. 

Ensembles 
Collection of macroscopically identical systems. All the systems have the same thermody­

namic boundary conditions, however, they can reside in different microstates. 

If you assume that the ensemble consists of A systems, it is possible to define ai as the number 
of systems in the ensemble that are in state i at any given time. Since the total number of systems 
is constant, the condition 

�
i ai = A must be satisfied. 

Sterling’s Approximation 

N

ln N ! = 
� 

ln m 
m=1 

For large N, it is possible to replace the sum by a integral: 
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or

�N

Nln N ! = ln xdx = x ln x − x = N ln N − N1| 
x=1 

This approximation is quite good, as can be seen in Fig. 1 

Figure 1: Error between ln (n!) and nln(n)− n, in % 

In Statistical Mechanics, we always deal with large numbers (systems, microstates, molecules, 
etc.) and the Sterling’s Approximation is very useful for all the derivations that we will see in the 
next week. 


