In problem 2 of P.S. 5, we define the relevant ensemble as an ensemble in which T,V,N and H (magnetic field) must be held constant. In the solutions, it was determined that the characteristic potential for this ensemble is given by:

$$
\varphi=E-T S-H M
$$

From the General Structure of Statistical Mechanics, we have:

$$
-\beta \varphi=\ln \Gamma
$$

Γ is the partition function of this ensemble and is given by:

$$
\Gamma=\sum_{\text {states }} e^{-\beta\left(E_{\text {state }}-M_{\text {state }} H\right)}
$$

Since the energy of the system is independent of the spin alignment of the individual particles, it is possible to set the energy as a constant and the partition function is just given by:

Now, the total magnetization of the system is given by

$$
M=\sum_{i=1}^{N} n i \mu_{0}
$$

The microstates available to each particle are either $n i=+1$ or $n i=-1$. The partition function can therefore be expressed as:

$$
\Gamma=\sum_{n i=-1,+1} e^{\beta^{N}{ }_{1} n i \mu_{0} H}
$$

The sum within the exponential is over the total number of particles of the system. From basic math, $e^{a+b}=e^{a} \cdot e^{b}$ and

$$
\Gamma=\sum_{n i=-1,+1} e^{\beta^{N}{ }_{1} n i \mu_{0} H}=\sum_{n i=-1,+1} \prod_{i=1}^{N} e^{\beta n i \mu_{0} H}=\prod_{i=1}^{N} \sum_{n i=-1,+1} e^{\beta n i \mu_{0} H}
$$

Since the particles are identical,

$$
\Gamma=\prod_{i=1}^{N} \sum_{n i=-1,+1} e^{\beta n i \mu_{0} H}=\left(\sum_{n i=-1,+1} e^{\beta n i \mu_{0} H}\right)^{N}=\left(e^{\beta \mu_{0} H}+e^{-\beta \mu_{0} H}\right)^{N}
$$

This could have bee done in less steps if we consider that, for a system of non-interacting distinguishable particles,

$$
Q=q^{N}
$$

We just needed to calculate the partition function q of a single particle. In this case, each particle can be in just two possible states, corresponding with a parallel or anti-parallel alignment with the field, and

$$
q=e^{\beta \mu_{0} H}+e^{-\beta \mu_{0} H}
$$

