148 A Model Approach to Alloys

1
|
i 02

Fig. 7.5 Activity of component A ina

/ regular solution as a function of the inter

1000° K action parameer €2, From O. J. Kleppa,

B 0.2 04 06 08 A in Liguid Metals and Solidification, ASM,

Xp—> Cleveland, 1958,

approximation. According to Henry'slaw, In y,” = constant when componen
i is dilute, whereas from equation 7.12 we see that In y, approachcsl a conr
stant value, £2/RT, asymptotically as X; — 0. Furthermf)rc the validity (,)f
Raoult’s law being applicable for the solvent in a sollunon where Henry's
law is obeyed for the solute is also an approximation, since In y, approaches
zero asymptotically as X, approaches unity, from equation 7.12.

7.3 NONREGULAR SOLUTIONS

For systems in which there is considerable deviation from randomness,
the expressions derived in the last section are not applicable. For thes:
solutions Guggenheim! has derived a relation for Py, namely,

20
Poam = X__,X],ZND[l - X_&X,;[cxp (“7_147) - 1]’

Expanding the exponential in equation 7.14 and eliminating terms of higher
order than the second, it is found that

(7.14)
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LE. A, Guggenheim, Mivtires, Oxlord Press, London, 1952,
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In the case where Q = 0, Py, in equation 7.14 becomes equal to that in
7.8. When (1 is negative in sign (equivalent to attraction between unlike
neighbors), Pyyp, calculated from 7.14 becomes greater than the random
value expressed by 7.8. For positive values of £, the reverse is true. Thus
cquation 7.14 represents an attempt to express the conditions for more
realistic situations. In these cases when Py, # Piap (random), shors-
range order is said to oceur. In order to examine this phenomenon further
consider a B ion surrounded by Z nearest neighbors. For a random solution
the probability that a given ion in this shell is an A ion is simply X . For a
nonrandom solution the probability p; will be different from X,,. The short-
range order parameter o, is defined as

P

aLIEI—-X
A

(7.18)
which is equal to
_Puw
ZN XXy
In principle, one may go out into the second shell and calculate p, and o,
eic., since they will also tend to be different from random.

For complete randomness o; = 0; for short-range order in which there is
a preference for A-B pairs, «, < 0; and for clustering o, > 0. The reader
should be aware that other definitions of the short-range order parameter
are in use, so care must be taken when evaluating results. The quantitics
%3, %y, €IC., May be measured in many cases by x-ray and neutron diffraction
techniques. Some results are shown in Fig. 7.6. This value may be used in
turn to calculate 2 from equation 7.14 and AH,, may be calculated from
equation 7.15. If experimental thermodynamic data exist for AH,,, a check
on the validity of equation 7.14 may be obtained. Such an examination has
been made for several systems. For systems that de not involve transition

o, =1—

(7.19)
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clements there is often reasonable agreement with the predictions based on
the quasichemical theory discussed here and experimental structural data.
The solid Al-Zr system is one for which rather good agreement is obtained,
as shown in Fig. 7.7. It should be observed that if AH,, is positive, Qis
positive. e, > 0 so that clustering occurs in this system.

By use of an approach similar to Guggenheim the following relations hav
been derived for the activity coefficients.!

I:.U — 1+ EXA:| -

[ e —
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where
y=[1 +4X,(1 — XN — 1))
and

N = exp (——Q )

ZRT
From experimental data for y, {2 may be determined directly and Py, for
example, may be calculated. In Fig. 7.8 are shown experimental activil
data for the liquid In-Sb system which have been fit to a particular valueof

Q.

The interaction parameter {1 has been examined in some detail b
Averbach.? The value of £ is, in a general case, dependent upon bolt

1 G. B. Stringfellow and P. E. Greene, J. Phys. Chem. Sol., 30, 1779 (1969).
2 B. L. Averbach, in Energetics in Metallurgical Pheaomena, Vol II, W. M. Mucll.
Ed., Gordon and Breach, New York, 1965,
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30, 1779 (1969). ’

composition and temperature; let it be assumed that these may be separated.
Thus for £ we may write

2 X
o, = IO +g(D)

For the free energy of mixing, by employing 7.14 and 7.15 we may write
AG,, = Pyplu + j(X) + g(T)] — T AS,*

whcrlc AS,° is the configurational entropy. Other entropy contributions are
obtained from differentiation of the first term on the right-hand side with
1espect to temperature since § = —(9G/a7),. Now

AS,¢ =k ln W
and the number of ways of arranging A-A, A-B, B-A, and B-B pairs is
1
W= &
PJ\:\] PBB! PAB‘ PI'IA!

Thislterm actually contains many unallowable configurations. To illustrate
wnsider a B atom. All pairs involving this atom must be either B-B or B-A
pairs. No A-B or A-A pairs are allowed. The expression for W' is modified,




152 A Model Approach to Alloys

therefore, to take into account the fact that when Py, is that for a rund.om
solution, AS,, must also equal that for a random solution. The final equation

employed is
™ E)Z( N )
Ny Nyl
Upon substitution we find that

Pliam = ZNX Xull — o)

P!

SN |
PJ\AI- ‘”BD! PAUI- i DA

Na!'Ngy
W=

N

and recalling that AS,, = —(@ AG, [8T), one may derive that

AS

m

A8, — L [ZNX X (1 — D]
aT

Solving for AS,,¢ and recalling that

AS, X = AS,, — AS,(ideal)
we obtain

d
A8, o [a] kNG[X s In X5 + X3 In Xu] — {51; [ZNoX aX (1 — 2)g(T)]

and also
A, = AH ™ = ZN X Xn(l — a)fu + (X))

For small derivations from ideality

o 2X X plu +(X) + g(1)]
= kT
Upon examination of the above equation for AS,*, one secs .Lhat_ the sign
cannot easily be predicted. The first term on the right-hand side is alwaﬁ
slightly negative but the temperature dgpcndcnce o‘f g(T} may be very
large in principle and may be gither positive or negative in sign. Also one
sees that £ may not be obtained from thermodynamic mcasulrcrncm
of AH,, since only the terms [u + j(X)] are involved in the expression for
AH,,, whercas [ZNg = [u + (X)) + g(T)].

As a simple case, assume that g is linearly dc]}cndcnt upon temperatur
[g(T) = gT] and let us examine some alloys. From icrmodynamlc datz
AH, and AS, ¥ arc often available. The terms [u +J,r{l.\’]]g and g may be
obtained as a first approximation from AM,, and AS™, rcspc?lwcly, by
assuming that o = 0. « is then calculated from the sum [u +;[X}] + o7
and substituted back into the expressions for Alf,, and '_‘.S"f in Ur.tlcl' to
caleulate [u + j(X)] and g again. This process is_rcpcalcd u_unl co_nsnslcnc.\.
is attnined. The comparison of thermodynamic caleulation with x-rar
results is shown in Table 7.1 for several solid alloy systems.
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Table 7.1 Short-Range Order Calculations®
Mole o

System frac. AH, Agxs Nl 4 A5 Not -

(A — B) B (kJjmol)  (J/mol-K) (kJ/mol} (JjmolK) (YZRT (Therma) (x-ray)
Al-Zn(650°K) 0.2 2.2 0.54 1.2 —0.50 0.17 0.06 0.13
A-Zn(650°K) 0.3 33 0.63 1.2 — .46 0.17 0.09 0.16
Al-Ag(820°K)  0.10 +0.84 0.42 +0.77 —0.38 0.07 0.0l 0.15
Al-AR(B20°K) - 0.815 —1.05 4.2 —0.52 =23 —=0.36 =011 —0.0%
Co-Au(720°K)  0.50 —=5.1 —0.08 —1.48 —0.23 —0.27 —0.14 —0.13
Cu-Au(720°K) 0.75 —4.4 ] —1.76 —0.25 —0.33 —0.12 —0.15
Au-Ni(1125°K) 0.5 7.3 2.9 25 —1.1 0.13 +0.06 0 4005
Au-AgiBO0°K) 0.5 —4.6 —1.4 — 1.4 0.25 =0.18 —0.0% —0.08

‘From B. L. Averbach, in
124 Breach, New York, 1965

It should again be emphasized that the use of pair potentials is only a
convenient way lo represent in a statistical sense the gross thermodynamic
properties of an alloy. The use does not imply that there are actually covalent
bonds between pairs since the terms u and j(X) for a metal include energy
contributions from electronic interactions near the Fermi surface which
belong to the crystal as a whole as well as ion-ion contribution.

7.4 ORDER-DISORDER TRANSITIONS IN SOLIDS
Atomic Order

Various types of order-disorder reactions may occur in crystals. There is
a second-order magnetic transition, for example, in some solids in which a
ferromagnetic or antiferromagnetic substance become paramagnetic as the
temperature is raised above the critical point. As discussed earlier there exists
a change from a superconducting state to nonsuperconducting state for a
large number of materials. These processes result from the alignment of
magnetic moments in the case of ferromagnetic materials and electron spins
in the case of superconductivity In addition to these kinds of processes,
long-range atomic ordering processes occur in several alloys. At high
temperaturcs in these systems, the crystal exhibits only short-range order,
whereas at low temperatures, the atoms may order themselves in a long-
r:mge manner.

Consider as an example an alloy of composition 50 at 3 A and 50 at % B,
which tends to form an ordered phase, That is, the A atoms tend to order
themselves on one type of site, o, and B atoms tend to order themselves on
another type of site, #§, as shown in Fig. 7.9 for a body-centered cubic
structure. Let us denote by r, the fraction of o sites occupied by the right
atoms (A atoms) and by r; the fraction of §# sites occupied by the right
atoms (I3 atoms) in an ordered system. The fraction of « sites occupicd by

Energetics in Metallurgical Phenomena, Vol. 11, W. M. Mucller, Ed., Gordon
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Fig. 7.9 Long-range order on a b.e.c. lattice.

wrong atoms (B atoms), w,, will be given by

w,=1—1r,
and the fraction of # sites accupied by wrong atoms (A atoms), wg, is given
by wy=1—1rg
For complete order, r, = rg = 1, and for complete randomness, the prob-
ability that an A site is occupied by an A atom is X;; hence the fraction of «

sites occupied by A atoms for complete disorder is X. It is convenient to
define a long-range order parameter & in terms of disorder on the  sites as

==Xa (7.21)
1= X,
or, considering disorder on the f sites,
= X
g=1t—2p (1.22)
1— Xy

From equations 7.21 and 7.22 we see that, for complete disorder, & =1
and, for complete order, & = 1. For a state of order given by 0 < F <1,
the fraction of A atoms on o sites is r,. Considering N total sites, there are
(N/J2)  sites and (N/2) f sites. Thus the total number of A atoms on e sites
is r,(N/2). Substituting in equation 7.21 for Xy = Xy = + yields

No. of A atoms on a sites = (1—_:—90) N

(1 +.7’)N
4

No. of B atoms on f} sites

74 Order-Disorder Transitions in Solids 155

The fraction of B atoms on e sites is (1 — r,) and the number of B atoms
on w« sites is (1 — r,)N/2. Upon substitution in equation 7.21, we find

el

G
No. of B atoms on « sites = (1 y ‘/) N

No. of A atoms on f sites = (I

In the body-centered cubic crystal, § sites will be nearest neighbors to «
sites. Let us now evaluate the number of A-A pairs, B-B pairs, and A-B
pairs for an ordered structure with long-range order parameter .

The probability that an A atom will be on an « site is »,, and the probability
that an A atom will be on a fF site is wy = (1 — ry). Each a« site is surrounded
byIZ_ {# sites, but each pair is counted twice, so the probability of an A-A
pair is
_2+N01 =) _z2(1 =)

4 4

Zr (1 — rg)

The total number of pairs P,, is the probability of an A—A pair times the
number of A atoms or

since Z = 8. Similarly the total number of B-B pairs is found to be
Py = (1 — SN
For a solution containing 50 at %, A and 50 at % B, the number of A-B
pairs is
Poam = 2(1 + SN
The enthalpy for a gram-atom of solution is
H = No(l — S(Hyp + Hyp) + 2No(1 + S*)Hup

The configuration entropy is given by

Seone = k In ¥
where
B (N]2)!
- (No. A atoms on « sites)! (No. B atoms on « sites)!
(N[2)!

X
(No. A atoms on f sites)! x (No. B atoms on § sites)!
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or
(Nj2)!
W =
(I(1 + P4INJ{I(1 — F)J4IN}!

(Nj2)!
XU = PN (1 + LAY

Upon application of Stirling’s approximation

Spont = R0 2 — (1 + L) In (1 +F) + (1 = L) In(l = Ay (1.23)
In the limit of & = 0, S.on¢ = R In 2, which is the entropy for a random
solution for ¥, = Xy = & In the limit of & =1, S;on = 0 in agreement
with what is expected for complete order.

The free energy of solution is

G=H-—-TS
and upon substitution

G= No(l - L(/JSJUIAA + Ir?n[\) + 2N|1(] + -.(Ioz)fiA“
—RT{In2 =3} + Al + )+ (1 = L) In(l = D)} = NI
(7.24)

where 5° represents the excess entropy per atom (exclusive of configurational
contributions). The entropy, of course, is a maximum when & =0, 0
when there is complete randomness. IF §{(/y. + hpp) > . ‘thc clnlhalp)'
term will be reduced and an optimum value of % will be attained in order
to make G a minimum.,

As T increases, S.,,¢ becomes more important relative to the enthalpy
term, and hence % diminishes. Al a critical temperature, T, % in facl
becomes zero. From equation 7.24, the equilibrium value of & may be
calculated as a function of temperature. This is shown below in Fig. 7.10.

The critical temperature T, is governed by the rc[ali'cm. bctwccln fyp and
Yiaa + fyp). The lower the energy of the A-B pair in rcll:nmn to the
average of the A-A and B-B mean potentials, the higher 7, will be.

Solution of equation 7.24 yields

o 2w = Uy F )] a

e i

)
b
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and at any temperature different from T,

(14+.9) 29T,
(1—% T
This derivation is known as the Bragg-Williams or zeroth-order approxi-
mation. At low temperature .%° is very close to 1, and as T increases toward
T,, & decreases very rapidly. This behavior is typical of a cooperative
phenomenon. When order is perfect, it is difficult energetically to create
disorder (to exchange A and B atoms). As disorder proceeds, however,
the process becomes progressively easier from an energetic point of view
and finally, in the case of complete disorder, the energy becomes zero for
the exchange process. The disordering energy thus depends upon %,

As Fig. 7.10 indicates, according to this calculation the long-range order
parameter changes over a range of temperatures. As a consequence the
transformation is not first order in nature. The heat capacity, C,, may be
calculated by taking the temperature derivative of the enthalpy. Upon
performing this operation, a discontinuity in C, is found as expected for a
sccond-order transition. The comparison between calculated and measured
values of &7 as a function of 7"is shown in Fig. 7.11 for an alloy of 509, Cu,
0% Zn, and a comparison between calculated and experimental heat
capacities is shown in Fig. 7.12.

Order-disorder transformations may occur in many different crystal
sstems, For example, there are transformations in the Fe.c. system such as
m Cu-Au alloys at about 25 at %, Au, 50 at %, Au, and 75 at % Au. These

Fu

In (7.26)
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Fig. 7.13  Long-range order parameter & for an AgB alloy. From F. C. Nix and W.
Schockley, Rev. Mod. Phys., 10, 1 (1938).

transformations appear to be first order in nature and exhibit T curves
of the type shown in Fig. 7.13. The Bragg-Williams theory is inadequate in
treating these for transformations since it predicts them to be second-order
rather than first order in character.

One may readily show that order-disorder transformations do not have
lo occur al precise chemical compositions but may occur over a composition
interval. The further the actual composition is away from the ideal, however,
the lower will be the maximum value of & and T,,. For example, % obviously
cannot have a value of unity if the composition of the alloy is different from
5% A, 75%; B, say, since there are three face-centered sites for every one
corner site in the fe.c. structure. In a 209, A, 80% B alloy, for example,
some B atoms must by necessity reside on A sites. An example is shown in
Fig. 7.14. Note that the maximum value of & is about 0.8 and T, is about
640°K. This transition temperature is 20°K lower than that for an alloy
which contains 25 at %] Au,
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Fig. 714 Long-range order parameler as a function of temperature for an alloy con-
taining 80 at %] Cu and 20% Au. From F. E. Jaumot and C, H. Sutcliffe, Acta Mer., 2,
63 (1954).



