Problem 1:
Assume a system is at constant temperature T, volume V and number of particles N . Determine the relationship between the heat capacity C_{v} and the energy fluctuations $\left\langle(\mathrm{E}-\langle\mathrm{E}\rangle)^{2}\right\rangle$. You may remember from the first part of the course that C_{v} is the temperature derivative of the internal energy.

$$
\left\langle(E-|E\rangle)^{2}\right\rangle=\bar{E}^{2}-\bar{E}^{2}
$$

Canonical Partition $F_{n} Q=\Sigma_{i} e^{-\beta E_{i}}$

$$
\begin{aligned}
& \vec{E}=\sum_{i} E_{i} e^{-\beta E_{i}}=-\frac{Q^{\prime}}{Q}, \quad Q{ }^{\prime}=\left.\frac{\partial Q}{\partial \beta}\right|_{V} \\
& \frac{\partial \bar{E}}{\partial \beta}=-\frac{Q^{\prime \prime}}{Q}+\left(\frac{Q^{\prime}}{Q}\right)^{2} \\
& \text { But } Q^{\prime \prime} / Q=\overline{E^{2}}, \frac{Q^{\prime}}{Q}=-\bar{E} \quad \text { (Nose } \bar{E}=\langle E\rangle \\
& \operatorname{or} \frac{\partial \bar{E}}{\partial \beta}=-\bar{E}^{2}+\bar{E}^{2} \\
& \text { and } \frac{\partial \bar{E}}{\partial \beta}=-\beta_{\beta} T^{2} \frac{\partial \bar{E}}{\partial T}=-\beta_{\beta} T^{2} C_{1} . \\
& \theta\left\langle(E-\bar{E})^{2}\right\rangle=h_{B} T^{2} C_{V}
\end{aligned}
$$

Problem 2
Consider a system of N independent particles with N very large. Each particle has only two energy levels, 0 and ε.
a) Find the number of microstates, Ω_{M}, with total energy $\mathrm{E}=\mathrm{M} \mathrm{\varepsilon}$.
b) By using Stirling's approximation, derive the entropy per particle for this system as function of the fraction of particles, x_{e}, that are in the highest energy state. Sketch the entropy and mark important points (maxima, minima, etc.) on the X_{ε} axis (i.e. at what value of X_{ε} do they occur ?).
c) Calculate the temperature as function of X_{ε} Discuss the result.
a) $\Omega_{M}=H!/[M!(H-H!)]$

$$
\text { b) } \begin{aligned}
S & =k_{B} \ln \Omega M=k_{B}[\ln M!-\ln M \mid-\ln (M-M)!] \\
S & =h_{B}[M \ln M-M-M \ln M+M-(H-M) \ln (Y-M)+(H-M)] \\
S & =-k_{B} M\left[\frac{M}{H} \ln \frac{H}{H}+\frac{H-M}{H} \ln \left(\frac{(H-M}{H}\right)\right] \\
\frac{S}{H} & =S=-k_{B}\left[X_{e} \ln X_{\epsilon}+\left(1-X_{\epsilon}\right) \ln \left(1-X_{E}\right)\right]
\end{aligned}
$$

max at $x_{E}=1 / 2$
min at $X_{e}=0,1$

$$
\text { c) } \begin{aligned}
\frac{1}{T} & =\frac{\partial S}{\partial E}=\frac{\partial S / M}{\epsilon \partial X_{e}} \\
\therefore \frac{1}{T} & =\frac{k_{p}}{\epsilon} \ln \left(\frac{1-X_{e}}{X_{E}}\right)
\end{aligned}
$$

Note: negative temperature for $X_{\epsilon}>1 / 2$ indicting more particles in upper eneray level than in lower level- LASER +ype situation. tor: Statistical Thermo-consider part only for $T>0$.

Note: O he could also do part c by noting that $p_{\epsilon}=\frac{e^{-\beta t}}{1+e^{-\beta t}}=x_{\epsilon}$.
n $x_{\epsilon}=\frac{1}{1+e} \beta t$

$$
\begin{aligned}
& x_{t}\left(1+e^{\beta \epsilon}\right)=1 \\
& \beta \epsilon=\ln \left(\frac{1}{x_{t}}-1\right) \\
& \frac{1}{T}=\frac{k_{B}}{\epsilon} \ln \left(\frac{1-x_{\epsilon}}{x \epsilon}\right) \text { as before }
\end{aligned}
$$

Problem 3
Consider a solution of A and B molecules.
If I choose to write the number of ways one can arrange the A and B molecules on a model lattice by the formula $\Omega_{N}=\frac{N!}{N_{s}!N_{p}!}$ where N is the total number of molecules $\left(\mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}\right)$, and express the entropy of mixing as $\Delta S_{\text {mix }}=k_{B} \ln \left(\Omega_{N}\right)$,
a) What assumptions have I made for the configurational entropy of mixing? Discuss.
b) If A is a solvent and B is a polymer with n segments, is the above formula still valid? Discuss. How would you improve it? Discuss. No equations necessary.
c) Are there other contributions to the entropy of mixing? Discuss. No equations necessary.
a) Ascumpterno

1) No interactions between molecules (random mixing- ied Solution)
2) No Vacancies, defects etc.
 ave connected - not all conficurations possible. in model lattice. Only nearest nerbibor sites Of given secment available to nerchbovinc secment, etc as done in Flory Hubains model.
c) Yes.

Vibrations 1 Entropy - This can be quite lave Electronic "
MaGnetic i

Problem 4:

The compound is drawn as a line compound for simplicity, though a compound with off-stoichiometry can also be drawn. Some particular features to look for:
lines $a, ~ a ', ~ b, ~ b ': ~ T h e s e ~ r e p r e s e n t ~ t h e ~ t w o-p h a s e ~ e q u i l i b r i a ~ b e t w e e n ~ t h e ~ l i q u i d ~ a n d ~$ either the Cd or Zn phase. Nothing is changed to these equilibria as one introduces the compound. This can be easily seen by drawing the free energy curves for the system, with and without the compound.

lines e and f: When a new stable appears the solubility limits in the adjoining phases decrease. Again, draw free energy curves to see this.
points c and d: The eutectics are formed when the $C d+L$ (or $\mathrm{Zn}+\mathrm{L}$) two-phase region meets the $\mathrm{Li}+c o m p o u n d$ two-phase region.

Problem 5:
Researchers at MIT are working hard to understand the possible phases of the element Donorium (Do) a recently discovered element which is important because it enhances the properties of Endowium (En) when alloyed with it.
Below, the zero-temperature enthalpy and the Einstein temperature (at atm pressure) are given for three crystal structures, speculated to be stable for pure Donorium. Donorium is not magnetic at any temperature.

phase	enthalpy at zero K	Einstein temperature
α	$0 \mathrm{~J} /$ mole	350 K
β	$5 \mathrm{~kJ} / \mathrm{mole}$	475 K
γ	$7 \mathrm{~kJ} / \mathrm{mole}$	200 K

What is the stable state at zero K? Speculate on the possible phase transitions of Do as function of temperature at constant latm pressure. Justify your answer (possibly with sketches of free energies) and explain why each phase transition occurs. There is no need to perform numerical calculations.
Einstein temperature determines magnitude of vibrational entropy. large $\theta_{E} \rightarrow$ Stiff material \rightarrow low Sib. Since we have $15(T=0)(=\Delta H)$ and S for each phase $\left(S=-\left(\frac{\partial \sigma}{\partial T}\right)_{P}\right)$ we know the relative shape of the free energy curves

