Exam 2
 Solutions
 3.20 MIT
 Fall 2001

Problem 1

$$
\begin{gathered}
d E=T d S-p d V+F d l+\mu d N \\
E=T S-p V+F l+\mu N
\end{gathered}
$$

But we are told that we are working under a vacuum so $p=0$.
(a) What is the characteristic potential (ϕ) ?

Our controlling variables are T, F, N so

$$
\phi=E-T S-F l
$$

or

$$
d \phi=-S d T-l d F+\mu d N
$$

Or in terms of a Legendre transform of the entropy:

$$
-\beta \phi=\frac{S}{k}-\beta E+\beta F l
$$

(b) What is the partition function (Λ) for this ensemble?

$$
\Lambda=\sum_{j} \exp \left[-\beta E_{j}+\beta F l_{j}\right]
$$

and

$$
-\beta \phi=\ln \Lambda \quad \text { or } \quad \phi=-k T \ln \Lambda
$$

(c) Write the thermodynamic variables l, S, μ and E as a function of the partition function.

We can start with the equations of state we get from ϕ

$$
\begin{gathered}
l=-\left(\frac{\partial \phi}{\partial F}\right)_{T, N}=k T\left(\frac{\partial \ln \Lambda}{\partial F}\right)_{T, N} \\
S=-\left(\frac{\partial \phi}{\partial T}\right)_{F, N}=k \ln \Lambda+k T \ln \left(\frac{\partial \ln \Lambda}{\partial T}\right)_{F, N} \\
\mu=\left(\frac{\partial \phi}{\partial N}\right)_{T, F}=-k T\left(\frac{\partial \ln \Lambda}{\partial N}\right)_{T, F}
\end{gathered}
$$

and for E we can do the following

$$
\begin{gathered}
E=\phi+T S+F l \\
E=-k T \ln \Lambda+k T \ln \Lambda+k T^{2}\left(\frac{\partial \ln \Lambda}{\partial T}\right)_{F, N}+k T F\left(\frac{\partial \ln \Lambda}{\partial F}\right)_{T, N} \\
E=k T^{2}\left(\frac{\partial \ln \Lambda}{\partial T}\right)_{F, N}+F k T\left(\frac{\partial \ln \Lambda}{\partial F}\right)_{T, N}
\end{gathered}
$$

Problem 2

(a) What is $\frac{\overline{V^{2}}-\bar{V}^{2}}{\bar{V}^{2}}$ at constant T, P, N ?

We are in the isothermal-isobaric ensemble and the partition function is

$$
\Delta=\sum_{j} \exp \left[\frac{-E_{j}}{k T}\right] \exp \left[\frac{-p V_{j}}{k T}\right]
$$

Follow the three step procedure:
Step 1: Multiply both sides by the partition function

$$
\Delta \bar{V}=\sum_{j} V_{j} \exp \left[\frac{-E_{j}}{k T}\right] \exp \left[\frac{-p V_{j}}{k T}\right]
$$

Step 2: Get derivative with respect to mechanical variable's conjugate.

$$
\begin{gathered}
\Delta \frac{\partial \bar{V}}{\partial p}+\bar{V} \frac{\partial \Delta}{\partial p}=\frac{\partial}{\partial p}\left(\sum_{j} V_{j} \exp \left[\frac{-E_{j}}{k T}\right] \exp \left[\frac{-p V_{j}}{k T}\right]\right) \\
\Delta \frac{\partial \bar{V}}{\partial p}+\bar{V}\left\{\sum_{j}\left(-\frac{V_{j}}{k T}\right) \exp \left[\frac{-E_{j}}{k T}\right] \exp \left[\frac{-p V_{j}}{k T}\right]\right\}=\sum_{j}\left(-\frac{V_{j}^{2}}{k T}\right) \exp \left[\frac{-E_{j}}{k T}\right] \exp \left[\frac{-p V_{j}}{k T}\right]
\end{gathered}
$$

Step 3: Divide through by the partition function

$$
\begin{gathered}
\frac{\partial \bar{V}}{\partial p}+\bar{V}\left(-\frac{\bar{V}}{k T}\right)=\frac{-\overline{V^{2}}}{k T} \\
\overline{V^{2}}-\bar{V}^{2}=-k T\left(\frac{\partial \bar{V}}{\partial p}\right) \\
\frac{\overline{V^{2}}-\bar{V}^{2}}{\bar{V}^{2}}=-\frac{k T}{\bar{V}^{2}}\left(\frac{\partial \bar{V}}{\partial p}\right)=\frac{k T}{\bar{V}} \kappa
\end{gathered}
$$

where $\kappa=-\frac{1}{\bar{V}}\left(\frac{\partial \bar{V}}{\partial p}\right)=$ compressibility.
(b) Evaluate this relationship for an ideal gas.

$$
\begin{aligned}
p V & =N k T \\
\kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right) & =\left(\frac{-1}{V}\right)\left(\frac{-N k T}{p^{2}}\right)=\frac{1}{p} \\
\frac{\overline{V^{2}}-\bar{V}^{2}}{\bar{V}^{2}} & =\frac{k T}{\bar{V}}\left(\frac{1}{p}\right)=\frac{1}{N}
\end{aligned}
$$

This is a general result for the fluctuation of an extensive variable for an ideal gas. It means the fluctuations are small when N is large.
(c) When can the volume fluctuations become large?

Near a critical point where $\kappa=-\frac{1}{\bar{V}}\left(\frac{\partial \bar{V}}{\partial p}\right) \rightarrow \infty$.

Problem 3

(a) The degeneracy

$$
\Omega=\frac{M!}{N!(M-N)!}
$$

which is the number of ways to distribute N particles and $(M-N)$ vacancies over M surface sites.
(b) N, V, T constant mean the canonical ensemble

$$
Q=\sum_{j} e^{-\beta E_{j}}=\sum_{E} \Omega(E) e^{-\beta E}
$$

$E=-N \varepsilon$ which depends only on N and not the particular arrangement of the atoms. But since N is fixed, there is only one energy level.

$$
Q=\frac{M!}{N!(M-N)!} e^{\beta N \varepsilon}
$$

(c) Obtain an expression for the chemical potential of the argon atoms on the surface

$$
\begin{gathered}
\mu=\left(\frac{\partial F}{\partial N}\right)_{T, V} \\
F=-k T \ln Q=-k T\left\{\ln \left(\frac{M!}{N!(M-N)!}\right)+\beta N \varepsilon\right\} \\
F=-k T\{\ln (M!)-N \ln N+N-(M-N) \ln (M-N)+(M-N)\}-N \varepsilon \\
\mu=\left(\frac{\partial F}{\partial N}\right)_{T, V}=-k T\{-\ln N-1+1 \ln (M-N)+1-1\}-\varepsilon
\end{gathered}
$$

if we let $x=\frac{N}{M}$ we get

$$
\mu=-\varepsilon+k T \ln \left(\frac{N}{M-N}\right)=-\varepsilon+k T \ln \left(\frac{x}{1-x}\right)
$$

Problem 4

(a) We assumed:

- Boltzmann statistics
- non-interacting particles
- gas particles are indistinguishable
- mono-atomic particles, in which electronic \& nuclear excitations are neglected
(b) $\mu=0$
(c) Yes for both Fermions and Bosons but at high T, low density, high mass
(d) $P_{A B}$ for a totally random solution is equal to $2 x_{A} x_{B}=0.5$. Hence, a value of $P_{A B}=0.25$ represents short-range clustering. This restriction on the number of microstates reduces the entropy. To increase S we need to increase $P_{A B}$ towards 0.5.

Problem 5

	$S_{t o t}$	$\frac{S_{t o t}}{2 N}$
(a)	$k \ln 1$ or $k \ln 2$	0
(b)	$k \ln N(\mathrm{~N}$ ways to insert atom $)$	0
(c)	$-N k[\underbrace{0.01 \ln 0.01+0.99 \ln 0.99}]$	$=-\frac{1}{2} k[0.01 \ln 0.01+0.99 \ln 0.99]$
(d)	There are $\frac{4 \times 2 N}{2}$ number of pairs, each can be exchanged $\rightarrow k \ln 4 N$	0

