Final Exam
Solutions
3.20 MIT
Fall 2001

Problem 1

(a & b) Sources of irreversibility

• Bucket falling: potential energy is dissipated as heat in the environment at $25^{\circ}C$

Energy:

$$mgh = 1 * 9.8 * 2 = 19.6J$$

Dissipated as heat into environment

$$\Delta S = \frac{19.6 \, J}{298 \, K} = 0.0658 \frac{J}{K}$$

• Water evaporating

-Calculate the entropy difference between S(0.03 atm) and S(0.01 atm). -Imagine water evaporating against $0.03 atm \rightarrow$ this process is reversible -Expansion from $0.03 \rightarrow 0.01$ atm is irreversible

(**NOTE:** the irreversibility arises from the fact that the H₂O evaporates into a gas phase with $P_{H_2O} = 0.01$ atm, where as $P_{H_2O}^{equilibrium} = 0.03$ atm at 25°C.)

$$\Delta S = -\frac{1kg}{18\frac{g}{mol}} * 8.314 \frac{J}{mol - K} \ln\left(\frac{0.01}{0.03}\right)$$
$$\Delta S = 0.5074 \frac{J}{K}$$

Problem 2

(a) Elastic interactions always make a positive contribution to the enthalpy of formation. Think about it.

•Elements A and B can be by themselves in ideal geometry. When mixed, A has to adapt to the lattice parameter preferred by B and vice versa \rightarrow No one is happy \rightarrow positive enthalpy of formation.

•For a size difference of 15% the ΔH becomes too large to see miscibility.

(b)

• Size

$$\frac{\Delta V}{V} \approx \frac{0.3}{10.5} \approx 3\% \Longrightarrow \frac{\Delta a}{a} = \frac{1}{3} \frac{\Delta V}{V} = 1\%$$

 \rightarrow there is not much elastic interactions

Electronegativity

Ti and Ag are on opposite sides of the transition metal series. We expect some electronegativity difference \implies Compound forming.

(c) see next page

Problem 3

(a) It is important to remember that we are NOT talking about an ideal gas, thus $\Delta U \neq 0$. We can write the Gibbs free energy as

$$dG = -SdT + \sigma dA + \cdots$$

and from this we can obtain the following Maxwell relation

$$\left(\frac{\partial\sigma}{\partial T}\right)_A = -\left(\frac{\partial S}{\partial A}\right)_T$$

Then

$$\left(\frac{\partial\sigma}{\partial T}\right)_A = \frac{C}{T} = -\left(\frac{\partial S}{\partial A}\right)_T$$

Thus

$$\frac{\Delta S}{\Delta A} = -\frac{C}{T}$$

(b) What is $\left(\frac{\partial T}{\partial A}\right)_S = ?$

$$\left(\frac{\partial T}{\partial A}\right)_{S} = -\frac{\left(\frac{\partial S}{\partial A}\right)_{T}}{\left(\frac{\partial S}{\partial T}\right)_{A}} = -\frac{-\frac{C}{T}}{\frac{C}{T}} = \frac{C}{c_{A}} > 0$$

(Note C is the constant given in $\sigma = B + C \ln T$).

• Therefore the temperature must increase when the material is separated adiabatically $\left(\left(\frac{\partial T}{\partial A}\right)_S > 0\right)$

Problem 4

(b) This was a trick question. For a random solution:

$$P_{AA} = (P_A)^2 = x_A^2 = (0.5)^2 = 0.25$$

Hence when $P_{AA} = 0.25 \rightarrow$ solution is random \rightarrow already has maximal entropy. Changing P_{AA} in either direction will lower the entropy.

(c) No. The Second Law states that in a cyclic process the only result can not be that heat from one T is converted to work. The process described is not cyclic. The battery is losing internal energy.

(d) In a lattice model, only configurational entropy is included. The high temperature limit of S_{config} is $k_b [x \ln x + (1-x) \ln (1-x)]$ which is not dependent on T. Hence $C_{config} = T\left(\frac{\partial S_{config}}{\partial T}\right) = 0$. The Dulong and Petit limit for C actually comes from the vibrational entropy.

Problem 5

The best approach to this problem is to write everything using stress and stain. By doing this you avoid problems with sign conventions and units.

- Define elongation state with $\varepsilon_{xx}, \varepsilon_{yy}, \varepsilon_{zz}$.
- \rightarrow The conjugate variables are $\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$
- In this terminology, $C_p = C_{\sigma_{xx},\sigma_{yy},\sigma_{zz}}$
- We are asked to relate the heat capacity at constant length ($C_l = C_{\varepsilon_{xx},\sigma_{yy},\sigma_{zz}}$) to c_p .
- Using the given relation we can write

$$\left(\frac{\partial S}{\partial T}\right)_{\varepsilon_{xx}} = \left(\frac{\partial S}{\partial T}\right)_{\sigma_{xx}} + \left(\frac{\partial S}{\partial \sigma_{xx}}\right)_T \left(\frac{\partial \sigma_{xx}}{\partial T}\right)_{\varepsilon_{xx}}$$

• Now we must reduce these partials do get in terms of things we know. First, we can get a Maxwell relation by writing dG as

$$dG = -SdT - \varepsilon_{xx}Vd\sigma_{xx} \cdots \\ \left(\frac{\partial S}{\partial \sigma_{xx}}\right)_T = V\left(\frac{\partial \varepsilon_{xx}}{\partial T}\right)_{\sigma_{xx}}$$

• The other term $\left(\frac{\partial \sigma_{xx}}{\partial T}\right)_{\varepsilon_{xx}}$ can be written as

$$\left(\frac{\partial\sigma_{xx}}{\partial T}\right)_{\varepsilon_{xx}} = -\frac{\left(\frac{\partial\sigma_{xx}}{\partial\varepsilon_{xx}}\right)_T}{\left(\frac{\partial T}{\partial\varepsilon_{xx}}\right)_{\sigma_{xx}}}$$

• Putting this all together

$$\frac{C_{\varepsilon_{xx},\sigma_{yy},\sigma_{zz}}}{T} = \frac{C_{\sigma_{xx},\sigma_{yy},\sigma_{zz}}}{T} - V \underbrace{\left(\frac{\partial\sigma_{xx}}{\partial\varepsilon_{xx}}\right)_{T}}_{E} \left[\underbrace{\left(\frac{\partial\varepsilon_{xx}}{\partial T}\right)_{\sigma_{xx}}}_{\alpha_{L}}\right]^{2}$$

So,

$$C_L = C_p - TVE\alpha_L^2$$

Problem 6

(a)

$$L = NL_1 + (M - N) L_2 = L_N$$
$$E = N\varepsilon_1 + (M - N) \varepsilon_2 = E_N$$

(b) The partition function is defined as

$$\begin{split} \Gamma &= \sum_{states} e^{-\beta(E-FL)} \\ \Gamma &= \sum_{N=0}^{M} \frac{M!}{(M-N)!N!} e^{-\beta(E_N - FL_N)} \\ \Gamma &= \sum_{N=0}^{M} \frac{M!}{(M-N)!N!} \left[e^{-\beta(\varepsilon_1 - FL_1)} \right]^N \left[e^{-\beta(\varepsilon_0 - FL_0)} \right]^{M-N} \\ \Gamma &= \left(e^{-\beta(\varepsilon_1 - FL_1)} + e^{-\beta(\varepsilon_0 - FL_0)} \right)^M \end{split}$$

(c) Let ϕ be the appropriate thermodynamic potential at constant T and F.

$$\begin{split} \phi &= U - TS - FL \quad \text{and} \quad \phi = -kT\ln\Gamma\\ d\phi &= -SdT - LdF\\ L &= -\frac{\partial\phi}{\partial F} = \frac{-kT}{\Gamma}\frac{\partial\Gamma}{\partial F}\\ L &= M\left\{\frac{L_1e^{-\beta(\varepsilon_1 - FL_1)} + L_0e^{-\beta(\varepsilon_0 - FL_0)}}{e^{-\beta(\varepsilon_1 - FL_1)} + e^{-\beta(\varepsilon_0 - FL_0)}}\right\} \end{split}$$

Problem 7

The pressures outside the cylinder were given as $P_A = 0.6$ and $P_B = 0.2$ atm. Let the pressures inside be given by P_A^i and P_B^i .

We are told that the piston is semi-permeable to B, thus:

$$P_B = P_B^i$$

The initial partial pressures:

$$\begin{split} P_A^i + P_B^i &= 1 \text{ atm} \\ P_B^i &= 0.2 \text{ atm} \\ \Longrightarrow P_A^i &= 1-0.2 = 0.8 \text{ atm} \end{split}$$

(a) The volume is reduced by half

$$P_A^i = \frac{n_A RT}{V}$$

So,

$$\begin{split} V &\to \frac{V}{2} \Longrightarrow P^i_A \to 2 P^i_A \\ P^i_A &= 1.6 \text{ atm} \\ P^i_B &= 0.2 \text{ atm} \end{split}$$

since B is still in equilibrium with the environment..

(b)

$$P_{tot} = P_A^i + P_B^i + P_C^i = 1.6 + 0.2 + 0.15 = 1.95$$
 atm

(c)

$$\begin{array}{rcl} P_A^i = & 1.6 \\ P_B^i = & 0.2 \\ P_{BC}^i = & 0.15 \\ P_C^i = & 0 \end{array}$$

$$P_{tot} = P_A^i + P_B^i + P_C^i + P_{BC}^i = 1.95 \text{ atm}$$