Final Exam
 Solutions
 3.20 MIT
 Fall 2001

Problem 1

($\mathrm{a} \& \mathrm{~b}$) Sources of irreversibilty

- Bucket falling: potential energy is dissipated as heat in the environment at $25^{\circ} \mathrm{C}$

Energy:

$$
m g h=1 * 9.8 * 2=19.6 J
$$

Dissipated as heat into environment

$$
\Delta S=\frac{19.6 \mathrm{~J}}{298 K}=0.0658 \frac{\mathrm{~J}}{\mathrm{~K}}
$$

- Water evaporating
-Calculate the entropy difference between $S(0.03 \mathrm{~atm})$ and $S(0.01 \mathrm{~atm})$.
-Imagine water evaporating against $0.03 \mathrm{~atm} \rightarrow$ this process is reversible
-Expansion from $0.03 \rightarrow 0.01 \mathrm{~atm}$ is irreversible
(NOTE: the irreversibility arises from the fact that the $\mathrm{H}_{2} \mathrm{O}$ evaporates into a gas phase with $P_{\mathrm{H}_{2} \mathrm{O}}=0.01 \mathrm{~atm}$, where as $P_{\mathrm{H}_{2} \mathrm{O}}^{\text {equilibrium }}=0.03 \mathrm{~atm}$ at $25^{\circ} \mathrm{C}$.)

$$
\begin{gathered}
\Delta S=-\frac{1 k g}{18 \frac{g}{m o l}} * 8.314 \frac{J}{m o l-K} \ln \left(\frac{0.01}{0.03}\right) \\
\Delta S=0.5074 \frac{\mathrm{~J}}{\mathrm{~K}}
\end{gathered}
$$

Problem 2

(a) Elastic interactions always make a positive contribution to the enthalpy of formation. Think about it.

- Elements A and B can be by themselves in ideal geometry. When mixed, A has to adapt to the lattice parameter preferred by B and vice versa \rightarrow No one is happy \rightarrow positive enthalpy of formation.
-For a size difference of 15% the ΔH becomes too large to see miscibility.
(b)
- Size

$$
\frac{\Delta V}{V} \approx \frac{0.3}{10.5} \approx 3 \% \Longrightarrow \frac{\Delta a}{a}=\frac{1}{3} \frac{\Delta V}{V}=1 \%
$$

\rightarrow there is not much elastic interactions
-Electronegativity
Ti and Ag are on opposite sides of the transition metal series. We expect some electronegativity difference \Longrightarrow Compound forming.
(c) see next page

The real Ti-At phase drageen is on the next pays.

Problem 3

(a) It is important to remember that we are NOT talking about an ideal gas, thus $\Delta U \neq 0$. We can write the Gibbs free energy as

$$
d G=-S d T+\sigma d A+\cdots
$$

and from this we can obtain the following Maxwell relation

$$
\left(\frac{\partial \sigma}{\partial T}\right)_{A}=-\left(\frac{\partial S}{\partial A}\right)_{T}
$$

Then

$$
\left(\frac{\partial \sigma}{\partial T}\right)_{A}=\frac{C}{T}=-\left(\frac{\partial S}{\partial A}\right)_{T}
$$

Thus

$$
\frac{\Delta S}{\Delta A}=-\frac{C}{T}
$$

(b) What is $\left(\frac{\partial T}{\partial A}\right)_{S}=$?

$$
\left(\frac{\partial T}{\partial A}\right)_{S}=-\frac{\left(\frac{\partial S}{\partial A}\right)_{T}}{\left(\frac{\partial S}{\partial T}\right)_{A}}=-\frac{-\frac{C}{T}}{\frac{c_{A}}{T}}=\frac{C}{c_{A}}>0
$$

(Note C is the constant given in $\sigma=B+C \ln T$).

- Therefore the temperature must increase when the material is separated adiabatically $\left(\left(\frac{\partial T}{\partial A}\right)_{S}>0\right)$

Problem 4

(b) This was a trick question. For a random solution:

$$
P_{A A}=\left(P_{A}\right)^{2}=x_{A}^{2}=(0.5)^{2}=0.25
$$

Hence when $P_{A A}=0.25 \rightarrow$ solution is random \rightarrow already has maximal entropy. Changing $P_{A A}$ in either direction will lower the entropy.
(c) No. The Second Law states that in a cyclic process the only result can not be that heat from one T is converted to work. The process described is not cyclic. The battery is losing internal energy.
(d) In a lattice model, only configurational entropy is included. The high temperature limit of $S_{\text {config }}$ is $k_{b}[x \ln x+(1-x) \ln (1-x)]$ which is not dependent on T. Hence $C_{\text {config }}=T\left(\frac{\partial S_{\text {config }}}{\partial T}\right)=0$. The Dulong and Petit limit for C actually comes from the vibrational entropy.

Problem 5

The best approach to this problem is to write everything using stress and stain. By doing this you avoid problems with sign conventions and units.

- Define elongation state with $\varepsilon_{x x}, \varepsilon_{y y}, \varepsilon_{z z}$.
\rightarrow The conjugate variables are $\sigma_{x x}, \sigma_{y y}, \sigma_{z z}$
- In this terminology, $C_{p}=C_{\sigma_{x x}, \sigma_{y y}, \sigma_{z z}}$
- We are asked to relate the heat capacity at constant length $\left(C_{l}=C_{\varepsilon_{x x}, \sigma_{y y}, \sigma_{z z}}\right)$ to c_{p}.
- Using the given relation we can write

$$
\left(\frac{\partial S}{\partial T}\right)_{\varepsilon_{x x}}=\left(\frac{\partial S}{\partial T}\right)_{\sigma_{x x}}+\left(\frac{\partial S}{\partial \sigma_{x x}}\right)_{T}\left(\frac{\partial \sigma_{x x}}{\partial T}\right)_{\varepsilon_{x x}}
$$

- Now we must reduce these partials do get in terms of things we know. First, we can get a Maxwell relation by writing $d G$ as

$$
\begin{gathered}
d G=-S d T-\varepsilon_{x x} V d \sigma_{x x} \cdots \\
\left(\frac{\partial S}{\partial \sigma_{x x}}\right)_{T}=V\left(\frac{\partial \varepsilon_{x x}}{\partial T}\right)_{\sigma_{x x}}
\end{gathered}
$$

- The other term $\left(\frac{\partial \sigma_{x x}}{\partial T}\right)_{\varepsilon_{x x}}$ can be written as

$$
\left(\frac{\partial \sigma_{x x}}{\partial T}\right)_{\varepsilon_{x x}}=-\frac{\left(\frac{\partial \sigma_{x x}}{\partial \varepsilon_{x x}}\right)_{T}}{\left(\frac{\partial T}{\partial \varepsilon_{x x}}\right)_{\sigma_{x x}}}
$$

- Putting this all together

$$
\frac{C_{\varepsilon_{x x}, \sigma_{y y}, \sigma_{z z}}}{T}=\frac{C_{\sigma_{x x}, \sigma_{y y}, \sigma_{z z}}}{T}-V \underbrace{\left(\frac{\partial \sigma_{x x}}{\partial \varepsilon_{x x}}\right)_{T}}_{E}[\underbrace{\left(\frac{\partial \varepsilon_{x x}}{\partial T}\right)_{\sigma_{x x}}}_{\alpha_{L}}]^{2}
$$

So,

$$
C_{L}=C_{p}-T V E \alpha_{L}^{2}
$$

Problem 6

(a)

$$
\begin{aligned}
& L=N L_{1}+(M-N) L_{2}=L_{N} \\
& E=N \varepsilon_{1}+(M-N) \varepsilon_{2}=E_{N}
\end{aligned}
$$

(b) The partition function is defined as

$$
\begin{gathered}
\Gamma=\sum_{\text {states }} e^{-\beta(E-F L)} \\
\Gamma=\sum_{N=0}^{M} \frac{M!}{(M-N)!N!} e^{-\beta\left(E_{N}-F L_{N}\right)} \\
\Gamma=\sum_{N=0}^{M} \frac{M!}{(M-N)!N!}\left[e^{-\beta\left(\varepsilon_{1}-F L_{1}\right)}\right]^{N}\left[e^{-\beta\left(\varepsilon_{0}-F L_{0}\right)}\right]^{M-N} \\
\Gamma=\left(e^{-\beta\left(\varepsilon_{1}-F L_{1}\right)}+e^{-\beta\left(\varepsilon_{0}-F L_{0}\right)}\right)^{M}
\end{gathered}
$$

(c) Let ϕ be the appropriate thermodynamic potential at constant T and F.

$$
\begin{gathered}
\phi=U-T S-F L \quad \text { and } \quad \phi=-k T \ln \Gamma \\
d \phi=-S d T-L d F \\
L=-\frac{\partial \phi}{\partial F}=\frac{-k T}{\Gamma} \frac{\partial \Gamma}{\partial F} \\
L=M\left\{\frac{L_{1} e^{-\beta\left(\varepsilon_{1}-F L_{1}\right)}+L_{0} e^{-\beta\left(\varepsilon_{0}-F L_{0}\right)}}{e^{-\beta\left(\varepsilon_{1}-F L_{1}\right)}+e^{-\beta\left(\varepsilon_{0}-F L_{0}\right)}}\right\}
\end{gathered}
$$

Problem 7

The pressures outside the cylinder were given as $P_{A}=0.6$ and $P_{B}=0.2 \mathrm{~atm}$. Let the pressures inside be given by P_{A}^{i} and P_{B}^{i}.

We are told that the piston is semi-permeable to B , thus:

$$
P_{B}=P_{B}^{i}
$$

The initial partial pressures:

$$
\begin{gathered}
P_{A}^{i}+P_{B}^{i}=1 \mathrm{~atm} \\
P_{B}^{i}=0.2 \mathrm{~atm} \\
\Longrightarrow \\
P_{A}^{i}=1-0.2=0.8 \mathrm{~atm}
\end{gathered}
$$

(a) The volume is reduced by half

$$
P_{A}^{i}=\frac{n_{A} R T}{V}
$$

So,

$$
\begin{aligned}
V \rightarrow \frac{V}{2} & \Longrightarrow P_{A}^{i} \rightarrow 2 P_{A}^{i} \\
P_{A}^{i} & =1.6 \mathrm{~atm} \\
P_{B}^{i} & =0.2 \mathrm{~atm}
\end{aligned}
$$

since B is still in equilibrium with the environment..
(b)

$$
P_{t o t}=P_{A}^{i}+P_{B}^{i}+P_{C}^{i}=1.6+0.2+0.15=1.95 \mathrm{~atm}
$$

(c)

$$
\begin{array}{cc}
P_{A}^{i}= & 1.6 \\
P_{B}^{i}= & 0.2 \\
P_{B C}^{i}= & 0.15 \\
P_{C}^{i}= & 0 \\
P_{\text {tot }}=P_{A}^{i}+P_{B}^{i}+P_{C}^{i}+P_{B C}^{i}=1.95 \mathrm{~atm}
\end{array}
$$

