
Exam 1 - Solutions 
3.20 MIT 

Professor Gerbrand Ceder 
Fall 2001 

Question 1 (SOLUTION) 

I have a machine stirring in a bucket with liquid. The bucket is under constant pressure 
and is insulated from the environment (an adiabatic bucket). 

a) Which of the following statements regarding the enthalpy of the bucket during this 
process is correct ? The bucket is defined as the physical bucket + the liquid in it. 

ΔHbucket > 0 ___X__ ΔHbucket < 0 ______ ΔHbucket = 0 ______ 

’
In general it is easy to derive that (dH)P = (δQ)p+(δW )p 
’ 
where δW are all the work terms that are not –pdV. 

Stirring is such a work term (a form of mechanical

work). Hence since work is performed on the bucket

’
W > 0, hence dH > 0.


b) Which of the following statements regarding the entropy of the bucket during this 
process is correct ? The bucket is defined as the physical bucket + the liquid in it. 

ΔSbucket > 0 __X__ ΔSbucket < 0 ______ ΔSbucket = 0 ______ 

The stirring is irreversible and the stirring work will

be dissipated as heat. Hence S increases.


c) Which of the following statements regarding the enthalpy of the surroundings is 
correct ? 

ΔHsurr > 0 ______ ΔHsurr < 0 __X___ ΔHsurr = 0 ______ 

Same analysis as in part b, but now for the

surroundings. It has to perform work, hence the

enthalpy of the surroundings decreases.


d) What is the minimal entropy change that needs to place in the surroundings. ? 

ΔSsurr > 0 ______ ΔSsurr < 0 ______ ΔSsurr = 0 __X___ 

The minimal entropy change in the surroundings will take 
place when the work needed for the stirring is produced 
reversibly. In this case ΔS  = 0.surr
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Problem 2 

(a) 

dU = TdS + Fdl 

We can define G as 

G = U � TS  � Fl  = dG  = �SdT  � ldF  ⇒ 

(We now have a potential G T,  F  ) 

(b) 

Clapeyron-type equation 
dF �S d	 �H 
= = = 

dT 
� 
�l 

⇒ 
dT 

�
T εV  

We  can integrate  and get  
� � 

�H T2 �
�εV 

ln 
T1 

If we use the data from the problem 

�H 300 J 
mole = = 530  MPa 

�εV �0 07  8  � 10  �6 m3 
. 

mole 

Now that we evaluated the constant term, we can find the upper and lower limits 

Upper limit: 
� � 

+70 MPa = 530 MPa � ln Tupper 
298 K 

Tupper = 340  K 

Lower limit: � � 
Tlower �20 MPa = 530 MPa � ln 
298 K 

Tlower = 287  K 
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Problem 3 

First we need to find the potential that would be minimal under these conditions, namely G (constant T & P and 
flowing matter) 

i� dn 

We are told temperature and pressure are constant, so those terms can be ignored. We now expand dG for each 
side of the system (called � and � here) 

dG �SdT V dP + += i 

dG dG + dG= 
�
A� dn  � dn  

Remember component C does not enter into the equilibrium because it cannot be moved. We now use information 

�
A 

�
A 

�
B 

�
B 

�
A 

�
B 

�
BdG  dn  dn  + + += 

dn�Agiven in the problem to write everything in terms of namely , 

�
A 

�
Adn = �dn 

�
B 

�
Bdn = �dn 

dn�A 
�
B = dn 

So now we have 
�
A� dn  �

B 

�
Adn 

�
A� dn  

dG � 

�
A 

�
B 

�
A 

�
A 

�
AdG  dn  dn  += 

�
A 

�
B)

�
A +

�
B += 

For  dG to  be zero,  the term in  brackets  must be zero  

�
A 

�
B 

�
A +

�
B ) = 0  +  

�
B 

�
A 

�
B 

�
A 

Problem 4 

(For S T,  V  ) start with the differential for S as a function of T and V � � � � 
∂S ∂S 

dS = dV + dT 
∂V ∂TT V 

Now all we have to do is manipulate the two partial derivatives to get them in terms of things we know 

� � � � 
∂S ∂p 

= (Maxwell) 
∂V ∂TT V � � 

∂p 
= 

�� 
1 � 

∂T � � 
∂T ∂V 
∂V p ∂p T 
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� � � � 
∂V  

∂p 
∂T V 

�= � � ∂T  p 

∂V  
∂p  T 

� 
� 

= v 

T 

V �  
V �  

= v 

T 

� 
� 

and 

� � 
∂S vc 

= 
∂T V T 

Putting this all together we get 

� � � � 
dS = �v dV + cv dT

T�T 

(We approach S V,  p  ) in the same manner 

� � � � 
∂S ∂S 

dS = dV + dp
∂V ∂pp V � � � � � � 

∂S ∂S ∂T 
= (Chain Rule) 

∂V ∂T ∂V p p p � � � � 
∂S ∂T cp 1 

= 
∂T p ∂V T V  �  vp � � 

∂S cp
= 

∂V p TV  �  v 

and 

� � � � � � 
∂S ∂S ∂T 

= (Chain Rule) 
∂p ∂T ∂pV V V � � � � 
∂S ∂T cv �T = 
∂T ∂p T 

� 
�vV V 

Putting all that together we get 

� � � � 
c �TvdS = cp dV + dpTV  �  v T�v 

Note: There are other methods of getting at this answer, but they all involve starting with the differential form of 
dS with S as a function of the appropriate variables. The answers are equivalent if you remember the relationships 
between cp and cv and �T and �S . 
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Problem 5 

We can use an ideal refrigerator. Starting with the first law, 

�QL + �QH + �W =  0  

and the second law 
�QH �QL 

+  =  0  
TH TL 

TH
�QH = �QL� 

TL 

Combining this with the first law � � 
TH

�QL 1 � 
TL 

+ �W =  0  

� � 
TH

�W = 1 �QL
TL 
� 

But we can write �QL as 

�Q L = dH = �AdT > 0 

(minus sign because heat is given to the heat reservoir at TL and dT  is negative) � � 
TH

�W = 
T 
� 1 dT�A 

� 1 � � 
TH

W = 
T 
� 1 dT�A 

298 � � � 298 TH 298 298
W = A 1 dT = [ ATH ln T ] [AT ] = AT H ln 298 A(297)1 1 

1 T 
� � � 

W = 140 kJ  
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