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Recitation: 9 
10/30/03 

Canonical Ensemble 
Consider an ensemble of systems with N, V and T constant. Each of the systems is closed to 

the flow of matter and has the same volume, V but it allows heat to fluctuate through its walls. 
Because of this, all the systems are are the same temperature, T , but their energy E can fluctuate. 
Note that the ensemble itself is an isolated system, and therefore A and AN,AV remain constant. 

Because of fluctuations in E, we have to consider the spectrum of energy E1(N, V ), E2(N, V ) . . . 
for each system. Each of the systems has access to the same spectrum of energy and therefore each 
energy value Ej can be repeated many times (degeneracy). 

In the canonical ensemble, the following conditions must be satisfied: 

aj = A 
j 

ajEj = ET 

� 

j 

i 

where ET is the total energy of the ensemble. If we use Lagrange multipliers for the total number 
of systems and energy in the ensemble, we finally obtain: 

a∗ exp (−βEj)
Pj = 

j 
= 

A exp (−βEj) 

for N, V, T fixed. 

If we use Q =

� 

j 
exp (−βEj), we can find the macroscopic mechanical properties of this 

ensemble (no T , S): 
� 

j 
Ej exp (−βEj) 

∂ ln Q¯U = E = PjEj = =
−
Q
 ∂β 

j 

Q is the partition function for this ensemble and it is the most important property. From it, 
everything else can be derived: 

� 
∂Ej 

� 
e−βEj 

∂V 

� 

j 
p =
p̄ =
 pjPj = − � 

j 
e−βEj 

j 

Finding T, S 
To find S, we can use the approach by Hill, 



We can take the differential of E = 
�

j EjPj: 

¯dE = 
� 

EjdPj + PjdEj (1) 
j 

From: 

e−βEj e−βEj 

Pj = 
e−βEj 

=� 
Q 

j 

We obtain 
1 

Ej = (ln Pj + ln Q)− 
β 

Substituting in Eq. 1, we have: 

1¯dE = − 
β 

� 
(ln Pj + ln Q) dPj + 

� 
Pj 

� 
∂Ej 

� 

dV 
∂V 

j j N 

Note that Ej are only function of N and V . 

Using the properties of Pj: 

� 
Pj = 1 

j � 
dPj = 0 

1 
d 

�� 
Pj ln Pj 

� 

= 
� 

Pj dPj + 
� 

ln PjdPj = 
� 

ln PjdPj 

j j 
Pj j j 

we have: 

1 ¯d (Pj ln Pj) = dE + pdV− 
β 

¯

From Thermodynamics, we know that 

T dS = dU + pdV 

And we therefore can establish the following relations: 

¯U E 
p 

↔ 
p̄

T dS 
↔ 

1d (Pj ln Pj)β
↔ − 

We finally have: 



�

S = −k 
� 

Pj ln Pj 

j 

If we substitute the expression for Pj: 

e−βEj 

S = −k 
� � 

1 
Ej − ln Q

� 

e−βEj
� − 

kT 
j 

j 

Ē U F 
S = + k ln Q = 

T T 
− 

T 

F is the Helmholtz free energy and is the characteristic potential for systems with N , V and T 
as independent variables. Note that these are the same boundary conditions stated for the Canoni
cal ensemble. 

Once we have F (N, V, T ) = −kT lnQ(N, V, T ), we can define all the thermodynamic proper
ties related to this potential: 

dF = −SdT − P dV + 
� 

µidni 

i � 
∂F 

� � 
∂ ln Q

�
S = − 

∂T V,N 

= kT + k ln Q
∂T V,N � 

∂F 
� � 

∂ ln Q
� 

p = − 
∂V T,N 

= kT 
∂V T,N � 

∂F 
� � 

∂ ln Q
� 

µ = 
∂ni T,V,ni=j 

= −kT 
∂ni T,V,ni=j��

∂ F 
� � 

∂ ln Q
�

U = E = −T 2 T = kT 2 

∂T ∂T V,N 

The last expression comes from: 

� 
∂F 

� � 
∂ F 

� 

U = F + TS = F − T = T 

∂T ∂ 1 
V,N T 

If you have the partition function Q you can obtain every thermodynamic property of a system. 

General Structure for any set of Boundary Conditions 
For any set of boundary conditions, the probability for the system to be in any microstate ν is 

given by: 

e�v 

Pν = � 
e�η 

η 



� 

The partition function, for this probability distribution, is given by: 

Z = 
� 

e�η 

η 

Each ensemble has its characteristic function, Λ:


1

Λ = − 

β 
ln Z 

For any set of thermodynamic boundary conditions, the main problem is to find �. This can 
be done using the following procedure: 

i) Write down the Euler relation in the entropy representation and divide by k: 

S 
= βE + βPV − βµN + . . . 

k 

ii) Identify the independent variables in the ensemble. These variables are the Thermodynamic 
Boundary Conditions. For the canonical ensemble, the independent variables are (T, V, N) 

iii) Compare the boundary conditions to the natural variables for the entropy S (E, V, N). 

iv) Legendre transform the Euler expression in the entropy representation, with respect to the 
independent intensive variables that appear in the ensemble. For the Canonical Ensemble, we 
have: 

S 
Φ = 

k 
− βE


v) � is given by:

S � = Φ − 
k 

For the Canonical Ensemble, we have: 
S 

= −βE � = Φ − 
k 

vi) The characteristic function Λ is: 
1 

Λ = − 
β 

Φ 

For the Canonical Ensemble we have: 

Λ = F = E − TS 

vii) Using the general structure for Stat Mech we have, for the Canonical Ensemble: 

e−βEv 

Pν = 
e−βEη 

η 

e−βEηZ = Q = 
� 

η 

S −βF = 
k 
− βE = ln Q 



It is possible to expand both sides of the equation 

F = −kT lnQ 

with 

e−βEiQ = 
� 

i 

If we expand both sides of this equation, we apparently obtain: 

F = E − TS = E 

According to the expression above, the TS term has disappeared!! 

To resolve this discrepancy, remember that the summation in Q is over all the microstates 
available to the system and not over the energy levels. Each energy level is highly degenerate, 
and Q can be expressed as: 

� 
Ω (N, V, E) e−βEE levels Q = 

E levels 

Now, we can perform the expansion: 

F = E − TS = E − kT ln 
� 

Ω (N, V, E) 
E levels 

By inspection, it can be seen that 

S = k 
� 

lnΩ (N, V, E) 
E levels 

This expression is the classical expression for the entropy of an isolated system (microcanoni
cal ensemble). 

Note that the Canonical ensemble is basically a collection of microcanonical ensembles. 

In general, we can write down the partition function for any ensemble as: 

e−βX2Z = 
� 

Ω (N, V, E) e−βX1

X1,X2... 

In this general expression, the degeneracy of each energy level has been taken into account by 
Ω (N, V, E). The sum in this case is not over all the microstates but over the different values that 
the extensive properties (such as energy, volume, N, magnetization, etc. can take). 

For more details, see Hill, p. 30 

Example: Ensemble with N, P and T as independent variables: 



� 

1. Euler Relation: 
S 

= βE + βPV − βµN 
k 

2. The independent variables are (T, P, N) 

3. We need to do the Legendre Transform: 

S 
Φ = 

k 
− βE − βP V 

4. By inspection, 
Φ 

G = − 
β 

5. Using the general structure, we finally have: 

e−βEv −βpVν 

Pν = 
e−βEη −βpVη 

η 

e−βEη −βpVηZ = 
� 

η 

S −βG = 
k 
− βE − βpV − βµN = ln Z 

Once you have the partition function and you have identified the characteristic function, every
thing else can be readily obtained: 

From Classical Thermodynamics, we have: 

dG = −SdT + V dP + µdN 

And therefore, 

� 
∂G 

� � 
∂kT ln Z 

� � 
∂ ln Z 

� 
kT ∂Z 

S = = + = kT + k ln Z = + k ln Z 
∂T ∂T Z ∂T 

− 
∂T P,N P,N P,N
� 

∂G 
� � 

∂ ln Z 
�


V = = −kT 
∂P ∂P T,N T,N � 
∂G 

� � 
∂ ln Z 

� 

µ = = −kT 
∂N ∂N T,P T,P 
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Problem 1 
Lagrange Multipliers: 

N� 

j=1 

Show that − 
N

Pj ln Pj , subject to the condition 
� 

j=1 

Pj = 1 is a maximum when Pj is a con

stant. 

Solution 1 

Here we use Lagrange multipliers again with the constraint 
�

j Pj = 1. 

Pj ln Pj − α 

� 
N� 

j=1 

Pj − 1M
= − 
N� 

j=1 

Maximize 

� 
∂M 

= − ln Pj − 1 − α = 0 
∂Pj 

Pj = exp [− (1 + α)] 

Determine α 

N� 

j=1 

Pj = N exp [− (1 + α)] = 1 

1 
exp [− (1 + α)] = 

N 

Thus 

Pj = 1 
N 



Problem 2 
The partition function of a monatomic ideal gas is: 

�3N/21 
� 

2πmkT 
V NQ (N, V, T ) = 

N ! h2 

Derive an expression for the pressure and the energy from this partition function. 

Solution 2 
For p, 

� 
∂ ln Q

� 

p = kT 
∂V T.N 

� 
1 

� 
3N 

� 
2πmkT 

�
ln Q = ln + ln + N ln V 

N ! 2 h2 

kT N 
p = 

V


For E


2πmk � 
∂ ln Q

� 

= kT 2 

� 
3N 

� 
h2 

E = kT 2 

2 2πmkT ∂T N,V h2 

3N 
E = kT 

2 


