There was a heated
argument in the grad lounge today. And I need your help in proving that i am right and the other person is wrong.

We all know that: $d U(S, V)=(d U / d S)$ constantV*dS $+(d U / d V)$ constant $S * d V$
and this corresponds to:
$d u(S, V)=T * d S-P^{*} d V$
and therefore
$T=(d U / d S)$ constant V and $P=-(d U / d V)$ constant S
--Everything above this line is true

One of us says that this same method can be applied for U as a function of T and P That is:
$d U(T, P)=(d U / d T)$ constant $P * d T-(d U / d P)$ constant $T * d P$
--Line above is true. That is just math: expressing the differential
--of a a function of two variables.
and this corresponds to:
$d U(T, P)=S^{\star} d T-V * d P$
--Who is the scoundrel that says the above thing ? This must be an
--invented statement ? You see, the way we get to the equations of --state is by comparing a mathematically true statement: dU (S,V) = $--(d U / d S) c o n s t a n t V^{*} d S+(d U / d V)$ constant $S^{*} d V$, with the first/second law --combo: du $(S, V)=T * d S-P * d V$.
--And by the way, when we do this for other functions (F,G,H etc.) we --are implicitly still using the first/second law combo.
--The scoundrel that claims that $d U(T, P)=S * d T-V * d P$ is making it up. --There is no such statement in thermodynamics.
and therefore:
$S=(d U / d T)$ constant P and $V=(d U / d P)$ constantT

The argument against this is that we know $d U=T * d S-P * d V$. But we cannot say anything like $U=T S-P V$ because we only know that dU= delQ + delW and that does not give info on the integral of dU

I can't say which is my argument for fear of being wrong in front of the professor.
--If this does settle the score, I suggest you duel it out. I will be --happy to referee. No seriously, I'll be happy to talk to you in --person if more clarification is needed.

