1. See Problem 5 in Problem Set 8 Solutions.

Ba. Assuming Random Walk $<R^{2}>=n l^{2}$
Bb. In general $<R^{2}>=n l^{2} f$
i). $\left\langle R^{2}\right\rangle=n l^{2} \Rightarrow f=1$. Random Walk. Jumps not correlated.
ii). $<R^{2}>=0 \Rightarrow f=0 \Rightarrow$ Jumps completely correlated.
iii). $n l^{2} \ll R^{2}>n^{2} l^{2} \ldots f>1$. Future jumps are biased by prior jumps.

4.

Diffusion mechanism is temperature dependent. At 150°, you are in extrinsic rather than intrinsic regime. Grain boundaries, defects increase rate of diffusion.
5.

$$
\begin{gathered}
\Delta g_{b}=-2000 \mathrm{~J} / \mathrm{mol} \\
\gamma=100 \mathrm{~mJ} / \mathrm{m}^{2} \\
\Gamma_{c}=\frac{-2 \gamma}{\Delta g_{B}} \\
\Delta g_{B}=-2000 \mathrm{~J} / \mathrm{mol} \times \frac{1 \mathrm{~mole}}{6.02 \times 10^{23} \text { atoms }} \times \frac{4 \text { atoms }}{1 \text { unit cell }} \times \frac{1 \text { unit cell }}{\left(3.8 \times 10^{-10}\right)^{3}}=-2.42 \times 10^{8} \mathrm{~J} / \mathrm{m}^{3} \\
\Gamma_{c}=\frac{-2\left(100 \times 10^{-3}\right)}{-2.42 \times 10^{8} \mathrm{~J} / \mathrm{m}^{3}}=8.3 \times 10^{-10} \mathrm{~m} \\
\Delta G_{c}=\frac{16 \pi \gamma^{3}}{3 \Delta g_{B}^{2}}=2.9 \times 10^{-19} \mathrm{~J} \\
\# \text { Atoms }=4 \times\left[\frac{\frac{4}{3} \pi \Gamma_{c}^{3}}{a^{3}}\right]=174 \text { atoms } \\
\Delta G_{c}=2.9 \times 10^{-19} \mathrm{~J} \\
k T=1.38 \times 10^{-23} \times 800=1.1 \times 10^{-20}
\end{gathered}
$$

$$
76 k T=8.4 \times 10^{-19} \mathrm{~J}[@ 800 \mathrm{~K}]
$$

$\Delta G_{c} \approx 26.4 k T<76 k T$, Nucleation is likely observable.

