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Lecture 22: Spinodal Decomposition and Continuous Ordering. 
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Key Concepts 

•	 The interdiffusion flux in a binary alloy in the volume-fixed frame is given by KoM Eq. 18.9 as 

MΩ ∂2F 
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and thus inside the spinodal �D < 0 and the usual form of Fick’s second law is ill-posed. The condition 
D < 0 leads to uphill diffusion, consistent with separation of an initially uniform solution into two 
bulk phases with different compositions. 

•	 During continuous phase separation on a very fine scale, significant free energy is dissipated by the 
formation of concentration gradients in the system. This gradient energy modifies the diffusion po
tential for transformations. The free energy becomes a functional of the order parameter field ξ(�r) 
and the local diffusion potential is given by KoM Eq. 18.22: 

∂f hom 

Φ(�r) = − 2K∇2ξ (2) 
∂ξ 

•	 For conserved order parameters, the modified diffusion potential leads to the evolution equation 
known as the Cahn–Hilliard equation, KoM Eq. 18.25: 
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When gradient-energy effects can be ignored, this is equivalent to Fick’s second law. 

•	 For non-conserved order parameters, the modified diffusion potential leads to the evolution equation 
known as the Allen–Cahn equation, KoM Eq. 18.26: 
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•	 The solution to the Cahn–Hilliard equation for a one-dimensional system takes the simple form c − 
�c� = exp[R(β)t] cos(βx) where β = 2π/λ is the wavenumber and R(β) is the amplification factor. 
The initial stage of spinodal decomposition thus involves growth of composition modulations when 
R(β) > 0. The model gives simple expressions for the thermodynamic and kinetic wave-numbers, 
βcrit and βmax (see KoM Fig. 18.9). 



•	 For crystalline systems undergoing spinodal decomposition, the lattice constant is generally a function 
of the composition of the solution and this can give rise to significant coherency strain energy that 
adds and additional term to the diffusion potential and thus to the Cahn–Hilliard equation. Two effects 
are commonly observed: first, the region of spinodal decomposition lies within the coherent spinodal 

′′ defined by f + 2a2Y = 0, where ac = (1/a)da/dcB and Y is an elastic modulus that in anisotropic c 

crystals depends on orientation of the composition wave (i.e., its wave vector); second, when Y is 
anisotropic, there will be specific directions in the crystal along which growth of composition waves 
is favored (in cubic crystals it is usually along < 100 > directions). 

•	 The microstructure of spinodally decomposed materials consists of spatially periodic composition 
modulations (see KoM Figs. 18.4 and 18.13). In crystalline materials the microstructure generally 
shows crystallographic alignment. Periodic variations of composition give rise to “satellite” reflec
tions in diffraction patterns, allowing easy measurement of the decomposition wavelength by small-
angle scattering experiments. 

•	 The microstructure of continuously ordered materials consists of interconnected antiphase boundaries 
which coarsen rapidly (see KoM Fig. 18.5) with a �R�2 ∼ t law (the same law as for grain growth). 

•	 Stationary solutions to the Allen–Cahn equation give the equilibrium structure and energy of diffuse 
antiphase boundaries. Non-stationary solutions give ordering kinetics and allow modeling antiphase 
boundary motion by “interface tracking” methods. 

•	 Interface tracking methods are the basic approach to the “phase-field” approach to modeling a great 
variety of phase transformation phenomena via coupled Cahn-Hilliard and Allen–Cahn evolution 
equations. 

Related Exercises in Kinetics of Materials 

Review Exercises 18.2–4, pp. 454–458. 


