MIT OpenCourseWare http://ocw.mit.edu

3.22 Mechanical Properties of Materials Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Plasticity and fracture of microelectronic thin films (SOI - Silicon on Insulator)

Image removed due to copyright restrictions. Please see http://www.electronicsweekly.com/blogs/electronics-weekly-blog/14jun05IBM_SOI.JPG

Xing Sheng, Liang-yi Chang, Hang Yu, Lin Jia MIT Department of Materials Science and Engineering Cambridge, MA 02139 USA

Big Picture

• Fabrication of SOI (Smart-cutTM process¹)

H+ implantation \rightarrow wafer bonding \rightarrow forming blisters \rightarrow splitting

• Mechanical issues related to the process

Need homogenous blisters forming and flat fracture surface

Image removed due to copyright restrictions. Please see Fig. 10 in [1]

Microscopic mechanism

• Stress and strain state at the location of blister²

Images removed due to copyright restrictions. Please see Fig. 9 in [1]

3.22 Mechanical Behavior of Materi [2] Raman, A., et al. "Effect of stress state and polymer morphology on environmental MASSACHUSETTS INSTITUTE OF TECHNO stress cracking in polycarbonate." Journal of Applied Polymer Science 88 (2003): 550-564.

Prediction & Optimization

• Fracture at interface (Griffith's theory)

$$\Delta U_{total} = \Delta U_{surf} + \Delta U_{el} = 4at\gamma_{surf}^{Si} - \pi a^2 t \sigma^2 \frac{1}{E_{Si}}$$
$$\frac{\partial \Delta U_{total}}{\partial a} = 0 \Longrightarrow \sigma_f = \sqrt{\frac{2E_{Si}\gamma_{surf}^{Si}}{\pi a}}$$

Images removed due to copyright restrictions. Please see Fig. 9b in [1]

Estimate : $\sigma_f = 420MPa$

Optimization¹

Implant other ions (He, etc) Temperature Use other Modes (Mode III)