MIT OpenCourseWare
http://ocw.mit.edu

3.22 Mechanical Properties of Materials

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Group: Effects of multidimensional defects on III-V semiconductor mechanics PS2 part b work detailing calculations of Young's modulus

We use the following equation to solve for Young's modulus in the different directions:

$$
\frac{1}{E_{[h k l]}}=S_{11}-2\left[\left(S_{11}-S_{12}\right)-\frac{1}{2} S_{44}\right]\left[\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2}\right]
$$

From the review article we see that

$$
E_{<100>}=\frac{1}{S_{11}}=8.547 \times 10^{10} \mathrm{~Pa}
$$

and using $\alpha=\beta=\gamma=\frac{1}{\sqrt{3}}$

$$
E_{\langle 111\rangle}=1.422 \times 10^{11} \mathrm{~Pa}
$$

for $\alpha=\beta=\frac{1}{\sqrt{2}}$ in the $<110>$ direction

$$
E_{<110\rangle}=1.22 \times 10^{11} \mathrm{~Pa}
$$

We conclude that the $<111>$ direction is the direction with the highest Young's modulus, hence it will be more resistant to stretching in the direction.

