
Extrinsic Semiconductors

- Adding 'correct' impurities can lead to controlled domination of one carrier type
 - n-type is dominated by electrons
 - p-type if dominated by holes
- Adding other impurities can degrade electrical properties

Hydrogenic Model

- For hydrogenic donors or acceptors, we can think of the electron or hole, respectively, as an orbiting electron around a net fixed charge
- We can estimate the energy to free the carrier into the conduction band or valence band by using a modified expression for the energy of an electron in the H atom

$$E_n = \frac{me^4}{8\varepsilon_o^2 h^2 n^2} = -\frac{13.6}{n^2}$$
 (in eV)

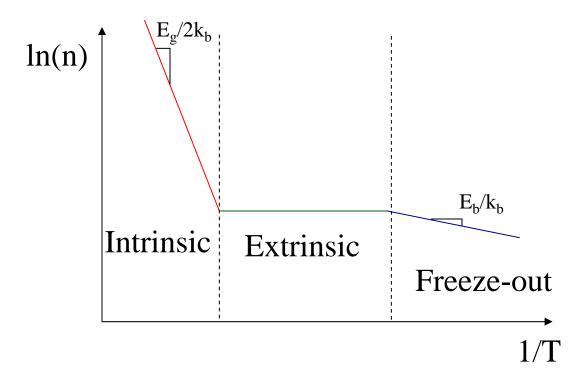
$$E_n = \frac{me^4}{8\varepsilon_o^2 h^2 n^2} \xrightarrow{\frac{e^2}{\varepsilon_r} = e^2} \frac{m^* e^4}{8\varepsilon_o^2 h^2 n^2} \frac{1}{\varepsilon_r^2} = -\frac{13.6}{n^2} \frac{m^*}{m} \frac{1}{\varepsilon^2}$$

•Thus, for the ground state n=1, we can see already that since ε is on the order of 10, the binding energy of the carrier to the center is <0.1eV

•Expect that many carriers are then thermalize at room T

•Experiment:

- •B acceptor in Si: .046 eV
- •P donor in Si: 0.044 eV
- •As donor in Si: 0.049


The Power of Doping

- Can make the material n-type or p-type: Hydrogenic impurities are nearly fully ionized at room temperature
 - n_i^2 for Si: ~10^{20} cm^{-3}
 - Add 10^{18} cm⁻³ donors to Si: n~N_d
 - $n \sim 10^{18} \text{cm}^{-3}$, $p \sim 10^2 (n_i^2/N_d)$
- Can change conductivity drastically
 - 1 part in 10^7 impurity in a crystal (~ 10^{22} cm⁻³ atom density)
 - $10^{22*1/10^7} = 10^{15}$ dopant atoms per cm⁻³
 - n~10¹⁵, p~10²⁰/10¹⁵~10⁵
 - $\Box \sigma/\sigma_i \sim (p+n)/2n_i \sim n/2n_i \sim 10^5!$

Impurities at the ppm level drastically change the conductivity (5-6 orders of magnitude)

Expected Temperature Behavior of Doped Material (Example:n-type)

• 3 regimes

Contrasting Semiconductor and Metal Conductivity

$$\sigma = \frac{ne^2\tau}{m}$$

- Semiconductors
 - changes in n(T) can dominate over τ
 - as T increases, conductivity increases
- Metals
 - n fixed
 - as T increases, τ decreases, and conductivity decreases

General Interpretation of $\boldsymbol{\tau}$

- Metals and majority carriers in semiconductors
 - $-\tau$ is the scattering length
 - Phonons (lattice vibrations), impurities, dislocations, and grain boundaries can decrease τ

$$\frac{1}{\tau} = \frac{1}{\tau_{phonon}} + \frac{1}{\tau_{impur}} + \frac{1}{\tau_{disl}} + \frac{1}{\tau_{gb}} + \dots$$

 $\tau_{i} = \frac{l_{i}}{v_{th}} = \frac{1}{v_{th}\sigma_{i}N_{i}}$ where σ is the cross-section of the scatterer, N is the number of scatterers per volume, and I is the average distance before collisions

The mechanism that will tend to dominate the scattering will be the mechanism with the shortest l (most numerous), unless there is a large difference in the cross-sections

Example: Si transistor, τ_{phonon} dominates even though τ_{impur} gets worse with scaling

Example: Electron Mobility in Ge

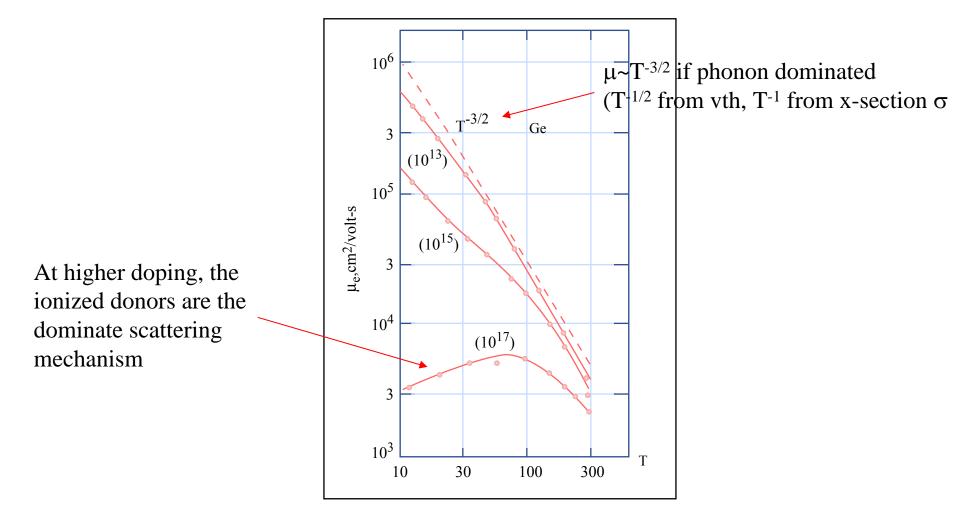
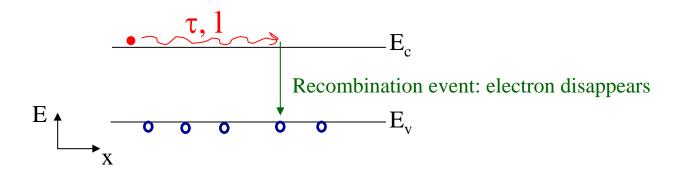
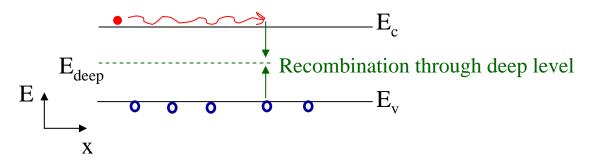



Figure by MIT OpenCourseWare.

Other Interpretation of $\boldsymbol{\tau}$

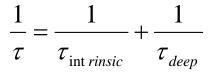
- Minority carriers in semiconductors
 - can think of τ as the time to recombination: recombination time
 - does not affect Drude model in any way



Imagine p-type material, so there are many more holes than electrons holes=majority carrier electrons=minority carrier

 τ is referred to in this context as the minority carrier lifetime

Other Recombination Pathways


• Deep levels in semiconductors act as carrier traps and/or enhanced recombination sites

•Barrier to capture carrier is $E_g/2$

•Since the probability of the carrier transition is $\sim e^{-\Delta E/kT}$, trapping a carrier with a deep state is very probable

•A trapped carrier can then help attract another carrier, increasing recombination through the deep state

Recombination and Generation (E_c to E_v)

- Generation
 - intrinsic: photon-induced or thermally induced, G=#carriers/vol.-sec
 - extrinsic:deep levels due to traps
 - G_o is the *equilibrium* generation rate
- Recombination
 - intrinsic: across band gap, R=# carriers/vol.-sec
 - extrinsic: deep levels due to traps
 - R_o is the equilibrium recombination rate, which is balanced by G_o

Non-equilibrium intrinsic recombination

n-type material

$$R = \frac{\Delta p}{\tau_h}; \ \tau_h = \frac{p_o}{R_o}$$

Where p_0 is the equilibrium minority carrier concentration

p-type material

$$R = \frac{\Delta n}{\tau_e}; \ \tau_e = \frac{n_o}{R_o}$$

Where n_0 is the equilibrium minority carrier concentration @1999 E.A. Fitzgerald

Non-equilibrium extrinsic recombination

$$R = \frac{\Delta p}{\tau_h} \qquad \tau_h = \frac{1}{\sigma_h v_{th} N_t}$$

Where σ_h is the capture cross section for holes and N_t is the concentration of recombination centers

$$R = \frac{\Delta n}{\tau_e} \qquad \tau_e = \frac{1}{\sigma_e v_{th} N_t}$$