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Lab 5: Monte Carlo simulations

Due date: 5/05/2005

In this lab, we will be using a Monte Carlo code that we have written ourselves.  Monte
Carlo codes are usually simple enough so that you can write them yourself.

The problem: Adsorption of H on the (001) Surface of Pd

When hydrogen adsorbs onto a clean (001) surface of Pd, the H atoms sit between the Pd
atoms.  These possible adsorption sites are marked with an X in Figure 1.  The H
coverage, θ, is the fraction of possible adsorption sites that are filled.  Evidence obtained
with LEED [Behm et al, Surface Science 99 (1980) p320] shows that for θ = 0.5 the H
atoms form an ordered arrangement.  We will model this adsorption problem with a
square 2D lattice model that consists of all the sites where H can adsorb.

Figure 1. Lattice model for H adsorption on Pd.

The energy model

As you learned in class, Monte Carlo trajectories are determined by the Metropolis
algorithm.  If ∆E<0 for a trial perturbation, the simulation accepts the perturbation; if
∆E>0 for a trial perturbation, the simulation accepts the perturbation with probability 
P α exp(-∆E/kT).  All Monte Carlo simulations need an energy model to calculate ∆E.  In
principle, if you really wanted to, you could use a first-principles calculation to calculate
∆E for every trial perturbation.  In practice, this takes way too long, and simpler energy
models are required. 

The energy model we will be using is called the "Ising Model".  The figure below
shows a two-dimensional square lattice on which a nearest-neighbor (NN) and next-
nearest neighbor (NNN) interaction are defined.  The occupation on each lattice site i is
characterized by a spin occupation variable, σi, which can take the value -1 or +1.  In a
model for a binary alloy, +1 and -1 can respectively stand for occupation of that lattice
site by an A or B atom.  In this problem, σi =+1 if the site is has an H adsorbed; σi = -1 if
the site is vacant.
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Figure 2. Definition of
interactions characterized by
V1 and interactions
characterized by V2.

The Hamiltonian (energy expression) of this lattice model is given below:
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The first summation is performed over first-nearest neighbor pairs; the second summation
is performed over second-nearest neighbor pairs.  The factor of 1/2 accounts for the fact
that every pair is counted twice in the sum.  V1 and V2 are the first and second neighbor
interactions.  µ is the chemical potential (or magnetic field): it fixes the amount of H
adsorbed.  At a given temperature it is linearly related to the log(PH2).  Note that 

θ = (1 + <σ> )/2, where <σ> is the average of the spin occupation variable.
If the parameters V1 and V2 are chosen well, and enough neighbors are included in

the model, the Ising model can do an excellent job of representing the actual energetics of
the system.  A first-principles tight binding study found that V1 is positive and V2 is
negative, with |V2| > V1.  We will therefore use the ratio V2/V1 = -2 to model this
system.   

Grand canonical simulations

Monte Carlo simulations on lattice models are typically performed in the grand-canonical
ensemble (Fixed volume, temperature, and chemical potential - composition can
fluctuate) rather than the canonical ensemble (fixed volume, temperature, and
composition - chemical potential can fluctuate).  This is largely for computational
efficiency.  In a canonical simulation, picking a trial perturbation is slow: for every trial
spin you flip, you have to flip another one (after making sure it is the correct spin) to
preserve concentration.  Both canonical and grand canonical ensembles can be shown to
give the same result for thermodynamic averages.  

As you may be used to thinking of composition as an independent variable, this
may require you to change your thinking of how you plot thermodynamic quantities.  In
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the Monte Carlo simulations we do not pick the concentration directly: we pick µ, and the
system will find an equilibrium concentration.  

Also, using the grand canonical ensemble changes the Metropolis algorithm
somewhat.  Instead of looking at ∆E, we use ∆E-µσi, where σi is the site of the trial
perturbation.

Running the code

The executable code is contained within a java archive file (2DMC-1.0.jar). To run the
code you will need to start up the java virtual machine (JVM) with the jar file in the
JVM's classpath and call the RunMC program, i.e.

user@hpcbeo2: java -cp 2DMC-1.0.jar RunMC “input_filename”

The input file contains tokens and values (one per line). To see a description of the
available (and necessary) tokens and values execute the command:

user@hpcbeo2: java -cp 2DMC-1.0.jar RunMC -h

More Helpful hints:

Before you start calculations it is important to get a sense of how long it will take you to
obtain a certain result.  This may be part of the input you need to decide whether you
actually should do the calculations !  Never start up a calculation unless you have some
idea whether it will take minutes, hours or days to finish.

µ-range to consider.  To get an idea of the chemical potentials in your system, you can
either do a few quick short runs, or (better) look at the energy of some possible structures
in your system and see where they would cross.  

Τ-range to consider.  To get an idea of where the transition(s) is (are), you should do a
few quick runs over a coarse temperature range.  Once you determine the range of
interest, you can do runs with a finer temperature mesh.

How do I look for the phase transitions?

A simple way you can look for first-order transitions is to plot the chemical potential vs.
spin.   Run  the  Monte  Carlo  simulation  at  a  fixed  temperature,  but  vary  ?.  From
thermodynamics,  we  know  that  in  a  2-phase  region,  the  chemical  potential  will  be
constant.  Thus, at a fixed temperature, if we plot chemical potential vs. spin, we can find
the  boundaries  of  the  two-phase  region.   Be  careful!   This  applies  to  first-order
transitions, but you should not rely upon this method to find boundaries of second-order
transitions.
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In  lab  4,  you  learned  that  one  can  find  a  first-order  transition  by  looking  for
discontinuities in first-order derivatives of the free energy.  One can find a second-order
transition by looking for discontinuities in second-order derivatives of the free energy.
Thus, a first-order transition will show discontinuities in E, a second-order transition will
show a discontinuity in Cv.
Interpreting the results: reduced units

Since there is only one energy parameter in the model (V1) all quantities can be scaled by
V1.  This allows us to work in reduced units.  If we set V1 = 1, chemical potential will be
in units of µ/|V1| and temperature will be in units of kBT/|V1|.

The inner workings of the code

The code sets up a NxN square lattice with the initial 2x2 configuration.  Note, phase
transitions will change with lattice size!! 

Then, basically the code works like this

Start loop over temperatures
   Start loop over chemical potentials

                  Start loop over lattice sites, i
                    flip spin of site 

Is ∆E-µσi, < 0?  If so, keep the spin that you just flipped?

If not, is 
( )

10exp
B

andbetweennumberrandom
Tk

E i <




 −∆− µσ
?

If so, keep the spin you just flipped
If not, flip it back.

          Calculate energy, heat capacity, spin
End loop over chemical potentials

End loop over temperatures

There are some tricks to speed up the code: these are documented in the code itself.  If
you have more questions about speed-up tricks, ask the instructor.
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The assignment

Calculate the complete H on Pd phase diagram as a function of temperature.

1) Determine the configuration with lowest energy at 0 K for θ = 0.5.  Can you prove it
has the lowest energy ?

2) Determine the phase diagram for this adsorbate system, i.e. determine the stable
arrangement (ordered, disordered, phase separation, …) as a function of temperature and
θ.  For practical reasons it is best to divide all equations by V1 so that you get µ/V1,
kBT/V1 etc.  The temperature on your phase diagram should thus be kBT/V1.

3) Plot coverage (θ) versus µ/kBT for a few interesting temperatures and compare with
what you would obtain using Langmuir's isotherm ( ln[θ/(1-θ)] = 2µ/kBT ).  At what
temperature do you expect agreement with Langmuir's isotherm ? ( For those who are
unfamiliar with the Langmuir isotherm, one of the key assumptions is that the adsorbates
do not interact with one another.)

4) The maximum temperature at which an ordered arrangement can exist in your phase
diagram will be at θ = 0.5.  Experimental evidence indicates that this maximum really
occurs for a coverage somewhat below θ = 0.5.  How could you modify the Hamiltonian
so that this feature is reproduced ?  You do not need to perform calculations.  Simply give
some suggestions.
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FAQ for PS 5:

1. What are the units of the code?

In the code, V1 is set to 1, and all energy units are normalized by V1.  The code
takes  kB=1.     Thus,  temperature is  in units  of V1/kB.    Chemical  potential  is
normalized by V1 and also divided by spin.  If this doesn’t make sense, look at

the exponential:  




 −∆−

kT
E µ σ

exp , and see how the units cancel out.

2. What  is  the  initial  configuration  of  the  spins  at  the  beginning  of  each
simulation?  What is the configurations as the simulations are running?

The spins are initialized to either all +1, all -1, 2x2, or random depending on the
input token INIT_CONFIG in the input file.

3. How are chemical potential (?), spin (σ) and coverage (θ) related.  

Be careful!  They are not all the same thing.  

Changing chemical potential will fix the spin (but chemical potential is not the
spin itself).

Coverage is related to spin by

? = (1 + < σ > )/2.

In our energy model, we use "spins" because of convenience.  Note however, you
should use coverage when presenting your data.

4. I  still  don’t  understand  the  chemical  potential?   Shouldn’t  there  be  two
chemical potentials instead of one?  Can I have negative chemical potentials?

The chemical potential for species ? is defined as α
αµ

dn

dG= , at constant T, V,

and number of atoms of the other species ?, ?, ?, and so on.  That is, it is the
change in free energy when you add an atom of a particular type (or subtract and
atom) to the system.  You should be able to see why chemical potential  will
control the composition of the system.

You may wonder why there are not two chemical potentials in this system,
one for vacancy, and one for H.  The reason for this is that in the grand canonical
ensemble for a two component system (sometimes called the semigrand canonical
potential), only one of these is independent.  Thus, we can define the chemical

potential as the difference between the two chemical potentials: Hvac µµµ −=
.  A positive or negative chemical potential will control whether the system is
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thermodynamically favorable with respect to adding either adding H atoms or
removing H atoms.

5. Does the Hamiltonian give the “free energy”?  What kind of energy is this?

The Hamiltonian only gives the energy.  It is not “free” energy without 
entropy terms.  The Hamiltonian gives the potential energy.  
Note, there are no kinetic energy terms.

6. How are the heat capacity (Cv) and susceptibility calculated?

Heat capacity is defined as the derivative of energy with respect to temperature

dT

dE
.  However, in statistical mechanics, one can obtain the heat capacity through

fluctuations in the energy: 
( )
2

22

kT

EE
Cv

−= .

The susceptibility is given by the formula = 1
N  ∂〈∑ i〉

∂ 

=


N

〈M〉2

In addition, the code will report a modified version of the above susceptibility

formula: ∣M∣=

N

〈M2〉−〈∣M∣〉2

For a discussion on the relevance of the difference between the two you may want
to  consult  Monte  Carlo  Simulation  in  Statistical  Physics,  K.Binder  and
D.W.Heermann (Springer, Berlin 1997). The second formula is relevant for finite-
sized systems for which (under some µ values) <M> becomes ill-defined.

7.  My results are all messed up.  I see no transitions whatsoever.

The most common error is to reverse the interactions.  Make sure 
V1=1 and V2 = -2. 

8. Can I see what the ground state is by setting T=0 and ?=0?

Remember you are running a Monte Carlo code.  It will calculate 






 −∆−

kT
E µ σ

exp  at every trial perturbation.  If T and  ?  are 0, this quantity is

undefined, and your simulation goes beserk.

9. I don’t understand phase transitions.  What is a first and second order phase
transition?  What are examples of first and second order phase transitions?
How do I mark this on my phase diagram?
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Phase transitions can be observed by observing discontinuities in a function Q(C),
where Q is an observable and C is a control variable.  If the function Q is a first-
derivative  of  the  free  energy,  you  have  a  first-order  phase  transition.   If  the
function Q is  a second-derivative of the free energy,  you have a second-order
phase transition.  This code outputs a few observables, Q, for you to examine.
These include Energy, Cv,  concentration,  as well  as  slope of energy,  Cv, and
concentration curves.  If you do not know which is a first-derivative or second
derivative  of  the free  energy,  you should  review your  classical  and  statistical
thermodynamics.  Phase diagrams do not usually say whether a phase transition is
first  or  second  order,  so  you  should  just  manually  mark  them  on  the  phase
diagram you turn in.

Examples of both:
Melting (where the underlying topology changes a lot) is almost always a first
order  transition.   There  is  a  latent  heat  of  melting,  which  shows  up  as  a
discontinuity of an E vs. T plot.   You saw this in lab 4.  Order-disorder transitions
(where the underlying topology of the lattice is unchanged) are often second order
phase transitions, but not always.

10. How do I know if I have enough Monte Carlo steps?

This is one of the things you can not know before testing.  You can look at the
final pictures or look at acceptance rates as a function of time.

In practice, for this lab, 1000-5000 equilibration steps are fine, and 3000-10000
sampling steps are fine.  

If you would like to investigate convergence properties further, you might want to
look at the autocorrelation function for the thermodynamic observable Q.  As
discussed in class, the relaxation time of a quantity of interest (in MCS) is related
to  its  autocorrelation  function.   You  want  to  make  sure  that  the  number  of
sampling steps you use (N_pass – N_eq) is much greater than the characteristic
relaxation time of the system.  The java archive (2DMC-1.0.jar) contains a class
AutoCorr that will determine the autocorrelation function for you for a particular
quantity of interest. To see a description of AutoCorr type:

user@hpcbeo2: java -cp “2DMC-1.0.jar” AutoCorr

keep in mind however that to determine the autocorrelation function for P steps
requires ((N_pass-N_eq)*P) operations.

11. What cell size should I use ?
For any cell size, finite size effects will  play a role in modifying the sampled
probability distribution.  The sampled probability distribution will differ from the
true probability distribution associated with the thermodynamic limit.  Hence, cell
size effects will yield phase transition temperatures (chemical potentials) that are
different from those obtained in the thermodynamic limit (N->inf).  
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As discussed in lecture, size effects are more important for 2nd order transitions
where correlation lengths diverge.  Divergent correlation lengths imply that the
maximum (and its location) of the thermodynamic quantity of interest (e.g., heat
capacity vs. T)  becomes a function of the cell size. 

One way to find a reasonable cell size is to pick one critical point in the system
and  study  its  convergence  with  system size.  Keep  in  mind  however  that  the
computing time required scales as L^2*Neq for each T and mu. 
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