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Preface 

If we make the broad divisions between ionic, covalent and metallic systems the only 

practical method of total energy and force calculation which works in the same way for 

each is the Hohenberg-Kohn-Sham density functional theory, an ab initio (or first 

principles) approach which assumes as input only the charges on the nuclei and their 

positions. Because of its computational cost it is not practical to do all the simulations 
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one might like with a first principles scheme, although the improvements in algorithms 

and computers over the past few years have greatly extended the range of problems 

which can indeed be tackled in this way. There are however many more approximate but 

faster schemes of calculation which are of use in materials science. 

In these notes I wish to show how various such approximate schemes of total energy and 

force calculation, usually regarded as empirical or semi-empirical in nature, can be 

derived from the same first principles approach, namely the Hohenberg-Kohn-Sham 

theory. You will not find any useful information here about the implemention of any 

schemes; for that you will have to go to the literature and the manuals of computer 

programs. This is rather an attempt at an overview of the principles of different schemes. 

The schemes I will discuss are: 

•	 The empirical tight binding model, which has been applied to transition metals, 

semiconductors and their alloys. In particular I describe a self-consistent tight-binding 

scheme which I recently developed with Tony Paxton [9,8] for partially covalent 

oxides. 

•	 The Effective Medium, Embedded Atom, Finnis-Sinclair, Second Moment or Glue 

Models, which are in their form (if not in their derivation) simplified forms of tight-

binding and which have been used for large simulations of metallic systems. At the 

time of writing I regard a “large” simulation for a metal on a work station as about 

100K atoms. Simulations of over 100M atoms have been done on parallel computers. 

•	 The ionic model, including polarisible ions. 

•	 Pair-potentials, which can be justified for simple (s-p bonded) metals. 

My selection and treatment of these schemes is personal (in the sense that they are 

schemes I happen to have worked with myself) and not exhaustive, so I risk annoying 
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people whose favourite scheme is not discussed. Sorry if you are one of them; please 

compose an excuse from my lacks of time, knowledge, intelligence and memory. 

My presentation is rather more unified than usual, but also briefer. The reader who has 

not studied elementary quantum mechanics will find it hard going. For anyone curious to 

know more I have recommended a number of books and articles, the most general being 

refs. [4], [10], [18], [19], [26], [28] and [36]. 

A Note on Units and Conventions 

I use Hartree atomic units, in which the unit of length is the Bohr radius (0.5292 Å), the 

unit of charge is the electronic charge (e) and the unit of mass is the electronic mass. 

Planck’s constant �� is unity and the unit of energy is the Hartree (27.212 eV). Many 

other authors use the Rydberg (13.606 eV) as the unit of energy . The main confusion 

which can arise is in expressions for the electrostatic energy of some system of charges: 

because in Rydberg units e2 = 2 . 

Wavefunctions of a single electron are written in Dirac “bra-ket” notation as ψ . As a 

function of position r the wavefunction is written r ψ ≡ψ( ). The scalar product of twor 

wavefunctions ψ1  and ψ 2  is written ψ ψ 2  and interpreted as the integral over all1 

space 

* r ψ 2 r∫ψ ( )  ( )  dr , where dr is a volume element. 

A factor of two is included by some authors to count the up and down spin electrons 

which occupy a “single” wavefunction. I have preferred to suppress the spin index on the 

wavefunction, that means to include it implicitly in the index nk, so there are no explicit 

extra factors of 2 for double occupancy, for example in equation (1.3) below for the 

charge density obtained by summing over occupied states. I do not discuss the effect of 

magnetism, which would require an explicit notation for spin. 
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The spherical harmonics used here are real. As described by Stone [33], for m ≠ 0 these 

are symmetric and antisymmetric combinations of the conventional, complex spherical 

harmonics: 
1 c ( )m *Yl m  = −1 2− 2 (Y + Yl m  )l m  

1 s m *Yl m  ( )  i 2− 2 (Y − Yl m  )= − −  1 l m  

In the notes the suffix L is used for the combined indices l and m, and we suppress the 

suffices c and s. The normalisation for the complex spherical harmonics here is the 

standard one described in Jackson [23], p.99, rather than the one used by Stone. 

1. The Hohenberg-Kohn-Sham background

I give here a summary of the Hohenberg-Kohn-Sham (HKS) results, which are the tools 

for applying density functional theory to the calculation of total energies and interatomic 

forces. A standard reference is the book by Parr and Yang [26]. You will find a 

discussion of all the subtle points there. I do little more here than define notation. 

The key quantity in density functional theory is the electron density n r( ), in terms of 

which the standard HKS functional for the total energy of a system of electrons and ions 

at zero absolute temperature can be written as 

nE HKS = Ts [ ] 

c 1
 xc  [ ]nV d r + 2 ∫ nV H [ ]n d r + E n . (1.1) +∫ 

cc+E 

The first term is the kinetic energy which the electrons in the system would have with this 

density, supposing them to be non-interacting; this is therefore the sum of single-particle 

kinetic energies: 
occ 

nk 2 nkT = ∑ ψ 1 ∇ ψ (1.2)2s 
nk 

where the summation runs over a set of occupied single particle wave functions  which 

are labelled by their k-vector and band index n. These labels are appropriate for systems 
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which are infinite and periodic, in which calculations are done by applying periodic 

boundary conditions to atoms in a box. In finite (bounded) systems the k-vector is not a 

good quantum number, so for generality simply regard nk as a label. There is implicitly a 

summation over both up and down spins which I have subsumed in the index n. The great 

achievement of Kohn and Sham was this way of treating a major part of the kinetic 

energy, by referring to a hypothetical system of non-interacting electrons with the same 

density as the real system. 

Note at this point that the electron density is expressed in terms of the single particle 

wave functions as in Hartree-Fock theory by: 
2occ 

nkrn( )  = ∑ ψ (r) . (1.3) 
n k, 

The second term in (1.1) is the interaction between electrons and cores. By “cores” I 

mean either ions or nuclei. Some explanation of this concept is appropriate. For many 

calculations, the inner shell electrons are not relevant to the properties of the material, 

whose bonding depends on the outer electrons (valence or conduction electrons), and 

these inner shell, or core electrons can be lumped together with the nucleus forming an 

ion and making a total core potential. The core potentials behave like an external 

potential felt by the remaining electrons which are treated explicitly in the calculation. 

This division of the electrons is carried out in the pseudopotential methods, discussed 

later. Returning to (1.1), the third term is the Hartree electrostatic self-energy of the 

electrons, in which the Hartree potential of the electrons appears. It is given by 

r′ 
V H ( )  = ∫ n( )

r dr′ . (1.4)
r r′− 

The fourth term is the exchange and correlation energy. It actually also includes that part 

of the true many-body kinetic energy of the electrons which has not been correctly 

5




xc 

xc

Lecture Notes Interatomic Forces Mike Finnis 

counted by T . Within the local density approximation (LDA) it is represented by a locals 

function ε (n) of the electron density: 

xc xc[ ] = ∫ nε ( )E n  n  d  r . (1.5) 

In applications the approximation (1.5) is usually made, because the local function ε  is 

the exchange and correlation energy per electron of a homogeneous electron gas, and this 

has been calculated and tabulated. However the LDA is not assumed in the development 

of the formalism here unless explicitly stated. Unfortunately no exact formula for the 

exchange and correlation energy of an i nhomogeneous electron gas is known; 

nevertheless eqn.(1.5) has proved to be remarkably accurate for many materials. There 

are notable exceptions among the transition metal oxides. Magnetic materials also require 

a different treatment, but in many cases they can be handled in an analogous way by 

defining separate up and down spin densities. 

Finally, the last term in (1.1) is the core-core interaction, which is a classical sum of 

Coulomb interactions, completely independent of the electron density: 

iEcc = 2
1 ∑ Z Zj . (1.6) 

≠i j  Rij 

This term is included here for the completeness of the total energy. It is often omitted 

from the functional because it is not relevant to calculating the electronic structure and 

electron density for fixed positions of the ions. 

The HKS functional is minimised with respect to the charge density n to get the ground 

state total energy. The minimisation is at constant total number of electrons N: 

N = ∫ n  d  r  . (1.7) 

The resulting Euler-Lagrange equation, known as the Kohn-Sham equation, is a single 

particle Schrödinger equation for each single particle wave function: 

nk nk1 2(− ∇  +  V eff ) ψ = ε ψ  , (1.8) 2 nk 
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where V eff  is the effective single particle potential and is given by 

V eff c xc= V + V H + V . (1.9) 

In (1.9), V c  is the potential of the ions, V H  is the Hartree potential given by (1.4) and V xc 

is the exchange and correlation potential, given by the functional derivative of the 

exchange and correlation energy: 
xc [ ]xc ( ) = δE n

V r 
δn( )  

. (1.10) 
r 

In (1.1) and (1.2) the wave functions and charge density are always implicitly linked via 

eqn.(1.3). 

A slightly different way to write the HKS functional, by rearranging (1.1), is 
occ 

E HKS nk 1 2 eff nk= ∑ ψ −  ∇  +  V ψ2 
n k  

nV 

, 

eff [ ]  c r 1 xc [ ]n d r + E n (1.11) n d r + ∫ nV ( )dr + 2 ∫ nV H [ ]−∫ 
cc+E 

This form has been very fruitful for further approximations. For by the variational 

principle for the Kohn-Sham equation (1.8), in the ground state the first term in (1.11) is 

variationally minimised with respect to the wave functions at fixed V eff , that is at fixed 

nkcharge density. It then becomes just the sum of the lowest N Kohn-Sham eigenvalues ε . 

This can be interpreted as a sum over the occupied single particle states, or the N states of 

lowest energy. The meaning of the energies of these states must be interpreted with 

caution, since they are not the eigenvalues of the many electron Hamiltonian. 

In this way we can conceptually decouple the wave functions and the charge density and 

regard the functional as depending on them independently, without the automatic link 

which eqn.(1.3) has provided up to now. The functional is then variationally extreme with 

respect to both. It is even possible to go a step further and to decouple V eff  in the same 

way, regarding EHKS  as a function of the wave functions, the charge density and the 
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effective potential as if these three kinds of quantities were independent. This may be 

useful because EHKS  is a variational extreme, although not a minimum, with respect to all 

three [20]. 
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2. The Kohn-Sham functional to second order

The functional is expanded about some reference charge density, n0, which is arbitrary 

but should be in some sense a useful approximation to the true charge density. Typically 

it would be the superposition of atomic charge densities. I will also use the subscript 0 to 

denote quantities derived from n0, such as the Hartree potential V H . The charge density0 

will now be characterised by its deviation δn n= − n0 , which I assume to be small. The 

functional becomes: 

occ 

E HKS nk 1 2 eff nk= ∑ ψ −  ∇  +  V0 ψ ) n0− ∫ (n + δn  V  eff [ ]dr2 0 
n k, 

c 1 H  xc  +∫ (n + δn  V  d  r + 2 ∫ (n + δn  V  [n + δn  d  r + E [n + δn]  (2.1) 0 ) ) 0 ]0 0 

cc+E .

Now make a Taylor expansion of (2.1) to second order in δn . Note first that 
2 xc 

xc [ xc xc 1 n rE n0 + δn] = E0 + ∫δn  V  0 dr + 2 ∫∫δ δ  n′ δ E 
d dr′  (2.2) 

n n′ �� δ δ  

where δn′ is short for δn( ). The first order terms sum to zero and after substituting forr′ 

V eff [ ] from (1.9) we are left with:n0

occ 

E2 
HKS nk 1 2 eff nk= ∑ ψ −  ∇  +  V0 ψ2 

n k, 

cc 1 H xc xc +E − 2 ∫ n  V  dr + E [ ] − ∫ n  V  dr (2.3) 0 0  n0 0 0 

2 xc ⎞⎛ δ E 
n n  d  d  + 1

2 ∫∫ ⎜⎝
1 + ⎟ δ δ ′ r r′ 
−r r′ n n′ ⎠δ δ  

and this is a useful starting point for further approximations, as first shown explicitly by 

Frauenheim and coworkers [7]. 

As it stands, EHKS in eqn.(2.3) is no more convenient than the original EHKS in eqn.(1.11)2

for making calculations, because in either case an iterative procedure is required. First an 

input charge density must be guessed (e.g. n0), then the Kohn-Sham equation (1.8) has to 

be solved for the eigenvalues and single particle wave functions, then the electron density 
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must be constructed from these output wave functions according to (1.3). Finally the 

charge density must be updated in some way before repeating the cycle, and so on until 

some convergence criterion is met when the input and output charge densities are the 

same to sufficient accuracy and EHKS  (or EHKS ) has then been minimised. Unlike EHKS ,2

E HKS nkin the ground state is not variationally minimised with respect to the ψ2

independently of the charge density; that would be too good to be true! Unfortunately, in 

(2.3) the wavefunctions and charge density must be coupled in the usual way for 

application of the variational principle. This coupling gives a Kohn-Sham equation as 

follows. 

The first order Kohn-Sham equation 

To apply the variational principle to (2.3), first express δn  in terms of the wavefunctions, 
nkthen make a small variation in ψ : 

occ 
nk nkδn = ∑ ψ r r  ψ − n0 (2.4) 

nk 

and 

0 = δE2 
HKS = δψ nk 

2−  ∇  +  V0 
1 2 eff ψ nk 

+ 2 ∫∫ (K(r, r ′)∑( δψ1 nk 

nk 

occ 

r nk nkr ψ δ n′ + n δψ r′ ′ ψ nkr r)d  d  r′ 
(2.5) 

where I have defined the kernel 

δ E
K(r, r ′) = 

1 + 
2 xc 

. (2.6) 
r r  n n′δ δ− ′ 

n n ′ ∈ n0{ ,  }

The variation in the ket is superfluous, since the operators are Hermitian. Hence 
nk 1 2 eff nk0 = δψ −  ∇  +  V0 ψ2 

. (2.7) 
nk nk+∫ δψ r ( ∫ K(r,  r  ′)δn  d  r′ ′) r ψ dr

Since the wavefunction variation is arbitrary but subject to maintaining orthonormality of 

the occupied wavefunctions, eqn.(2.7) is equivalent to the Kohn-Sham equation: 
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nk nk . (2.8) (− ∇ +  V eff ( ) + ∫ K(r,  r  ′)δn  d  r r ψ = εnk r ψ1 2 r ′ ′)2 0

The kernel K combines the Hartree, exchange and correlation contributions to the 

effective potential from the first order self-consistent change in the electron density. 

3. The Harris-Foulkes Functional

The Harris-Foulkes functional [17,14] is obtained by omitting the second order terms 

from E2 
HKS : 

occ 

E HF nk 1 2 eff nk= ∑ ψ −  ∇ +  V0 ψ2 
, 

cc 1 H xc 

n k  (3.1) 
xc [ ] −+E − 2 ∫ n  V  dr + E n0 n  V  0 dr .0 0  ∫ 0 

nkIt must be variationally minimised with respect only to the ψ , since there are no other 

terms in (3.1) that depend on the charge density; remember the input density n0 is held 

fixed. This does not require any iterations to self-consistency of the kind I described 

above, just the solution of the Kohn-Sham equation for the wave functions in the 

potential V eff . The quality of the Harris-Foulkes approximation compared to the full0 

E 

functional depends entirely on how accurately the input charge density n0 reproduces the 

self-consistent charge density n which would have resulted from the minimisation of 

HKS . The error in the energy so obtained is evidently of second order in δn , so the 

functional EHF  is stationary with respect to δn . At one time it was conjectured that EHF 

is variationally maximal with respect to n0 and equal to EHKS  at the variational minimum 

of the latter. It has since been established [32], however, that although EHF  is stationary 

at n0 = n , where n  is the density that minimises EHKS , it is certainly neither maximum 

nor minimum. Athough it is a pity we don’t have this bounding propoerty, EHF  is 

nevertheless a useful approximation, particularly as a basis further simplifications such as 

the tight-binding model [37]. 
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Hellmann-Feynman Forces 

The stationary property of the HKS functional with respect to n also gives us immediately 

the simple result for the forces on the nuclei, often called the Hellmann-Feynman 

theorem. Suppose we move an ion infinitesimally, changing thereby the external potential 

on the electrons by δV c . The unperturbed ground state charge density is n0. It is trivial to 

show that the total change in energy of the ground state is given to first order by: 

HKS HF c ccδE = δE = ∫ n0δV + δE . (3.2) 

Equation (3.2) is a very useful result, and a startling one when you first meet it. It is 

exactly what the change in classical electrostatic energy due to the given movement of 

the ion would be if the electron density were held fixed. It therefore tells us that once we 

have the ground state charge density, the forces on nuclei can be calculated with classical 

electrostatics. This is implemented in nearly all atomistic simulation programs. 

4. Empirical tight binding models

Non self-consistent tight binding 

The Harris-Foulkes functional has been used as a basis for further approximations leading 

to a tight-binding model [37]. The wave functions are expanded in localised orbitals 

labelled by their angular quantum numbers centred on the atomic sites R 

nk nk RLψ ϕ . (4.1) = ∑cRL

RL


The localised orbitals can be written in the form 

RLr ϕ = fR l  ( r − R )YL (r − R) (4.2) 

where the YL ≡ Y are spherical harmonics.l m 

The electron density is therefore 
occ


nk * nk
 RL R L ϕ ′ ′  . (4.3) n( ) = ∑ ∑ c cR L  ϕ r rr RL ′ ′ 

nk RL R L
′ ′  

If we define the reference Hamiltonian by H0 , where 
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V eff ( )1 2r H0 r = − ∇ +  0 r (4.4) 2 

the Harris-Foulkes form of the Kohn-Sham equation is 

nk nkH0 ψ = ε ψ  . (4.5) nk 

Now by substituting (4.1) into (4.5) and premultiplying by one of the localised basis 
RLorbitals ϕ  we obtain the matrix eigenvalue equations: 

RL R L  nk RL R L nk′ ′∑ ϕ H0 ϕ ′ ′  cR L  = εnk ∑ ϕ  ϕ  ′ ′  . (4.6) cR L′ ′  
′ ′  R LR L  ′ ′  

In empirical forms of tight binding, the matrix elements are free parameters to be fitted. 

Tony Paxton and I, like many before us, fitted them to the band structure calculated by a 

fully first-principles method. No functional forms for the orbitals themselves are 

introduced. Furthermore it is common to assume as we did that three centre integrals can 

be neglected, which means that the matrix elements in (4.6) do not depend on the 

coordinates of atoms besides the pair R  and R′ . This is probably the most serious 

approximation of the entire theory. A further simplification is to assume that the local 

basis orbitals are orthonormal, so that the right hand side of (4.6) is a single term. At this 

level of approximation, the remaining terms in the total energy, which are given in the 

second line of (3.1), are approximated by pairwise potentials between the atoms, e.g. of 

Born-Mayer form, which are fitted to data such as the lattice parameter and bulk 

modulus. The total energy from (3.1) then takes the semi-empirical form: 
occ 

E HF nk nk 1 pair ( ) . (4.7) → ETB = ∑ ψ H0 ψ R R− ′+ 2 ∑V 
n k  R R′, 

When this has been minimised with respect to the wavefunctions, by solving the Kohn-

Sham-Schrödinger equation, the first term becomes the sum of the eigenvalues of the 

occupied wavefunctions, or 
occ 

ETB 1 pair ( ) . (4.8) = ∑εnk + 2 ∑V R R− ′ 
nk R R′ 
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Self-consistency 

Self-consistency is included within the tight binding framework by solving eqn.(2.8) in 

an iterative cycle 

in nk outδn → {ψ }→ δn . 

A local basis is used as before, but now there is a part of the Hamiltonian, H ′ , that must 

be updated at each cycle of iteration. We write the total Hamiltonian as 

H H0 + H ′ . (4.9) = 

The matrix form of the Kohn-Sham equation with orthogonal orbitals is 
RL R L  nk nkϕ ′ ′∑ ϕ H0 + H ′ cR L  = εnk c ′ ′  (4.10) ′ ′  R L 


R L 
′ ′  

and there are now some new matrix elements which must be specified: 

RL R L RL R L ϕ ′ ′  ϕ ′ ′ϕ H ′ ϕ r K(r,  r  ′)δn  d  r r′ ′  dr  . (4.11) = ∫ ∫ 

Eqn.(4.10) has to be solved repeatedly until convergence is achieved, when 

in outδn = δn . 

In order to specify the matrix elements in (4.11) further approximations are made. Firstly 

we neglect three-centre integrals, that is, when R R′  we neglect integrals involving a≠ 

contribution to δn′ by a site which is neither R  nor R′ . 

≠The contributions to δn′ made by R  and R′ when R R′  are: 
occ


R nk * nk
 nk nk Rδn′ = ∑ cRL ′′ c ϕRL ′′ r r  − n0 (4.12) ′ ′  RL ′′′ ϕRL ′′′ 
′′nkL L ′′′ 

occ

R′ = nk* nk
 nk nk R′ r r  − n0 (4.13) ′ ′  ′ ′ ′δn′ ∑ cR L ′′ cR L  ′′′ ϕR L  ′′ ′ϕR L ′′′ 

′′nkL L ′′′ 

occ

RR′ = nk * nk
 nk nkr r  + c c. .  (4.14) ′ ′  ′δn′ ∑ cRL ′′ cR L  ′′′ ϕRL ′′ ′ϕR L  ′′′ 

′′nkL L ′′′ 

R′ in which c.c. denotes the complex conjugate of the terms which precede it and nR and n00

are the input electron densities at r′ contributed by atoms at R  and R′ respectively. The 
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next level of approximation is to neglect intersite matrix elements of H ′ , so that only on-

site elements of δn′ contribute. 

On-site matrix elements 

In order to evaluate the matrix elements of the variable part of the Hamiltonian, H ′ , from 

eqn.(4.11), we shall need not only the local orbital representation of the charge density as 

given by (4.12)-(4.14), but also the local orbital representation of the kernel K(r, r′). At 

this point we meet a dilemma. The natural thing to do would be to introduce the 

expansion: 
RL R Lϕ ′ ′  , (4.15) K(r, r ′) = ∑ r r′ϕ KRL R L ′ ′  

RL R L ′ ′  

however this would only be correct if the localised basis were complete. It certainly is not 

complete if in the basis there is only one representative of each angular momentum on 

each site, the commonly used minimal basis approximation. This problem is apparent if 

we consider the Coulomb part of the kernel K H (r, r ′) = 1 r − r′ . 

A pure Coulomb interaction defined by 1 r r  has the well-known expansion in 

spherical harmonics that is given in Jackson (1975), equation 3.70: 

1 

− ′

r r′ (4.16) 
r r  

= 4π∑ 2l 
1 
+1 r> 

r
l 
<
+ 

l 

1 YL ( )YL ( )
− ′ L 

where r> is the greater and r< is the smaller of r  and r′ . With our choice of a minimal 

basis, eqn.(4.16) is incompatible with (4.15); however we can use (4.16) directly when R 

and R′  are well apart, and in this case it is surely preferable to (4.15). For in this case the 

exchange and correlation contribution to K , let us call it K xc , becomes negligible 

compared to the Coulomb interaction K H  and we can evaluate the potential near R by the 

classical solution of the Laplace equation for multipoles contributed by δn  centred at R′ . 

Thus we are led to the approximation of treating all the intersite contributions to K as the 

Coulomb potentials of multipoles. This introduces an error in the contribution of the 
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Coulomb part of K because of the overlapping charge densities of nearest neighbours. 

xc 2 xcFurthermore by ignoring the contribution of K = δ E δ δ  n n′ when r  and r′ are 

different we are making the local density approximation (LDA) for exchange and 

correlation. The latter error is not a serious one in the energetics of many materials, 

including oxides of simple metals and early transition metals. Despite the fact that it 

omits for example the van der Waals interaction between anions in ionic crystals, the 

LDA gives a good account of the energetics of alkali halides and simple metal oxides. As 

for the former error, the hope is that even if it is not small it is somehow swept up by the 

empirical pair potential. 

I now define a multipole of the change in electron densityδnR by 
occ


e l nk* nk
 RL ′′ RL ′′′ R− n0 ( )) . (4.17) = ∑ ∫ d r  YL ( )(cRL ′′cRL ′′′ ϕr r r r ϕ rQRL

nk L L
′ ′′  

It is equivalent to the expectation value of the multiple operator [33] with the omission of 

intersite matrix elements. 

This can be expressed immediately in terms of strength parameters 

R 2+ l∆ l l  l  = ∫ dr r fR l ′ ( )  r′ ′′  r fR l ′′ ( )   (4.18) 

which are specific to our system, and the well known Gaunt coefficients 

CL L  L  = ∫∫ Ω L L ′ (4.19) ′ ′′  d Y  Y  YL ′′ 

that determine selection rules, as follows: 
occ


e nk* nk R
 2( ) 1 

. (4.20) QRL = ∑ c cRL ′′ ∆ l l  l  ′  ′′  − δ L0 q 4πRL ′  ′ ′′ CL L  L  0 
R


nk L L
′ ′′  

I have introduced qR which is the total number of input electrons on atom R.0

R Rq = ∫ r rd n0 ( ) . (4.21) 0 

The potential at r near R , meaning that part of the potential which has non vanishing 

matrix elements with the local orbitals at R, can now be expressed as an on-site term 
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R′ arising from δnR, which is discussed later, and the sum of contributions from each δn

n 

where R′ ≠ R . These latter contributions are 
R′ ( )r′

VR( ) = ∑ ∫
δ 

r dr′ (4.22) 
r r− ′ R R′≠ 

which by inserting (4.16) and (4.17) can be written as follows: 

er 
1 

l+1 YL(r R′)Q (4.23) − R′L .VR( ) = 4π ∑ ∑ (2l 
1 
+1) r R′−R R L′≠ 

In order to evaluate the matrix elements of VR r( ) between orbitals on the site R we first 

make an expansion of it in spherical harmonics: 
lVR( ) = ∑V r  YL( )  . (4.24) rr RL  

L 

The coefficients VRL can be obtained by applying the expansion theorem of a static 

multipole field to eqn.(4.23). The result can be written in the form 
eVRL = ∑ BL L ′ (R  R  )Q ′ (4.25) ′ − R  L  ′ 

R R′≠ 

4π 2 

where ′ − 
( ) −1 l ′ 

′ ′′  l ′′+1 YL ′′ (R  R  )   .(4.26) ′ −BL L ′ (R  R  ) = (2l +1)!!(2l′ +1)!! ∑( ) CL L  L  

(2l′′ −1)!!
′ −R  R  L ′′ 

In terms of its expansion coefficients (2.1) and the delta coefficients defined in (4.18) the 

matrix elements of the potential in (4.24) can be written immediately as: 
R L ′ RR L ′′ϕ ϕ ′ ′′  ′  . (4.27) VR = ∑VRL ∆L L  L CL L ′′ L 

L 

Finally consider the contribution to the on-site matrix elements at R from δnR. In 

principle a large number of terms should be taken into account, however in practice these 

have been lumped into a single term for each L: 

∫ R Rrδ r lUl d nl ( )  = Uδq , (4.28) 

Rwhere Ul  is an empirical constant (sometimes called “the Hubbard U”), δn  is thel 

contribution to δnR (see eqn. (4.12)) from the orbitals of symmetry L and δqR is thel 
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change in the number of electrons on the atom at R contributed by the orbitals of 

symmetry L. In practice so far the possible l dependence of U has been ignored. 

The total energy within this self-consistent tight-binding (SCTB) scheme can be written 

down by adding to the functional (4.7) the appropriate second order term corresponding 

to the above approximations for K. The final result is: 
occ 

ESCTB nk nk 1 pair ( R 2 e= ∑ ψ H0 ψ + 2 ∑V −R R′ ) + 1 ∑(Ul (δql ) + QR LV ) . (4.29) 2 R L  
n k  R R′ RL, 

Self-consistent tight-binding can be implemented more crudely than the description 

above implies. At the simplest level of self-consistent tight-binding, only U nδ R terms are 

included (the l dependence is ignored) and no account is taken of changes in other matrix 

elements. In particular, matrix elements between orbitals on a site are ignored. The next 

level of complexity, which is the level described above, is to include the L>0 or “crystal 

field” terms, i.e. changes in the matrix elements between orbitals on a site. No one has 

deemed it worthwhile yet to include self-consistency in inter-site matrix elements. 

Possibly the reason is that this would introduce so many more parameters that the 

simplicity of empirical tight-binding would have been lost, as well as its computational 

efficiency. When too many parameters have to be fitted there is a higher risk of 

producing an unphysical model. Probably at least the crystal field terms are necessary in 

partially ionic materials such as oxides, but the level of sophistication actually required is 

a matter for ongoing research. 

The tight-binding bond model 

The concept of the tight-binding bond model [37] is linked to the idea that in metals there 

is very little charge transfer. A tight-binding model with precisely zero charge transfer 

(neutral atoms) is equivalent to self-consistent tight binding with U = ∞ . If the atoms 

remain neutral, it is reasonable to assume that the on-site elements of the Hamiltonian do 

not contribute to changes in the energy when the atoms are moved around. 
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In practice this is implemented by varying the on-site matrix elements in a self-

consistency cycle to achieve charge neutrality of the atoms. The resulting diagonal terms 

in the sum of one electron energies (the first sum in (4.8)) are subtracted out, so that the 

sum of one electron energies becomes a sum of inter-site matrix elements or bond 

energies. Details of this approach are given in the reference [37].  Non self-consistent 

tight-banding which retains the diagonal elements of the Hamiltonian, as described 

previously, is sometimes called the tight-binding band model. The tight-binding bond 

model is a more consistent way to describe the energies of atoms in different 

configurations than the band model, because the approximation of neutral atoms is often 

a very good one. 

5. Second moment models and the like

The starting point for models in this category is the Harris-Foulkes functional. Here I 

show how the simplest model for metals, which I will call the second-moment model 

(SMM), is derived. Some of the earlier work on this subject is in the references [2,3]. 

There are many variants of this model, the parameters of which are fitted to experimental 

data for bulk metals [11,1,38,22,40].  A rather similar model is derived by the effective 

medium theory (EMT) [34,25,29,24], which takes as its zeroth order the energy of an 

atom which is immersed in an electron gas of the appropriate local electron density, the 

meaning of “appropriate” here being open to more than one interpretation. The term 

“embedded atom model” (EAM) is also commonly used generically for such SMM and 

EMT-type models, and it will be convenient here to use the term EAM in this way, 

although it was first used for the empirical type of EMT developed by Daw, Baskes, 

Foiles and coworkers [5,13]. 

The form of these EAMs depends on the definition of a certain local ‘density’ ρ (not 

necessarily the electron density; see below) which is defined at an atomic site i by 

summing a pair function φ( )over the neighbours j of i :Rij 
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ρ = ∑φ(Rij )  . (5.1) i

j


The range of φ is usually restricted to two or three shells of neighbours. 

The total energy is the the sum over atoms of a function of ρi , which provides the 

attractive forces between the atoms (causing their cohesion), and a pairwise repulsion: 
pair ( ) . 1E EAM = ∑ f ( ) + 2 ∑V Rij (5.2) ρii


i i j 
≠ 

Derivation of a Second Moment Model 

To see how a SMM, and other approximations to the full TB model, can be derived, let us 

look a bit deeper into the formalism. More details and depth can be found in the books 

[21,4]. In extended systems, because the single particle energies form a practically 

continuous spectrum, the sum over occupied states is usually written (and calculated) as 

the integral over the density of states: so that the non self-consistent tight binding energy, 

eqn. (4.8), becomes: 
ε F 

1ε ε ε + 2 ∑V RijETB = ∫ n( )d pair ( ) . (5.3) 
−∞ i j≠ 

where the density of states is given by: 

n( ) = ∑δ ε  ε  nk ) . (5.4) ε ( − 
nk 

The Fermi energy εF  has been introduced, together with the fairly accurate assumption of 

zero temperature. 

If the basis is orthonormal, which we assume for simplicity, this can also be expressed as 
nk* nkε RL ( −n( )  = ∑ ∑ c cRLδ ε  ε  nk ) . (5.5) 

nk R L  

By reversing the order of summation in (5.5) we can express the density of states as a 

sum of local densities of states: 

εn( )  = ∑nR (ε) , (5.6) 
R 
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where 
nk * nkε RL  ( −nR ( )  = ∑ ∑ c cRLδ ε  ε  nk ) . (5.7) 

L nk 

The key quantity in the SMM is the second moment of the local density of states: 
∞ 

2 nk* nk 2ε  ε = ∑ ∑ cRL  cRLεnk , (5.8) µ2 R = ∫ ε nR ( )d 
L nk−∞ 

which is a component of the second moment of the total density of states: 
2µ = ∑εnk (5.9) 2 

nk 

The idea is to approximate the first term of (5.3) (called the band energy) by using only a 

knowledge of the µ2 R  for the current configuration of atoms, and this turns out to give the 

EAM form of the cohesive part of the energy. 

It is done as follows. We can write the square of an eigenvalue ε  in terms of thenk

Hamiltonian: 

2 nk nkεnk = ψ H2 ψ . (5.10) 

Now use the completeness identities 
RL RL nk nk = 1 , (5.11) ∑ ϕ ϕ = 1; ∑ ψ ψ 

R L  nk 

inserting them between the factors in (5.10) to obtain 

2 RL ϕ ′ ′R L 2 = ∑µ2 R . (5.12) µ = ∑ε = ∑  ∑  ϕ H2 nk

nk R R′ LL ′ R


where 
2

RL ϕ ′ ′R L µ = ∑ ∑ ϕ H . (5.13) 2 R

R′ LL ′


ε F 

ε  ε  is proportional toThe SMM makes the approximation that the integral εnR ( )d∫
−∞ 

1

2
(µ ) :2 R 
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ε F 

∫ 2εnR ( )dε  ε = A(µ2 R )
1 

. (5.14) 
−∞ 

This is would be exactly true if 

a) The shape of the local density of states remains the same while it is stretched or 

compressed along the energy axis as a result of the local environment, 

b) The charge on the atom is fixed (the neutral atom model). 

The substitution of (5.14) and (5.13) into (5.3) leads directly to the form (5.2), if the 

further assumption is made that the Hamiltonian matrix elements have no angular 

dependence; that is, they are like the matrix elements between s-orbitals. 

6. Ionic models

The ionic model as developed by Max Born and coworkers and expounded in several text 

books is an intuitive description of the cohesion of ionic crystals, but one which we can 

be rigourously derived. It proceeds first by creating ions in their standard valence states, 

in which they have closed shells of outer s and p electrons, and then bringing them 

together to form a crystal. The energy of cohesion of the crystal is mainly due to the 

electrostatic attraction of the oppositely charged ions as they are brought together, known 

as the Madelung energy. The ions are regarded as point charges, or non-overlapping 

charged spheres and the infinite Coulomb summations to obtain the Madelung energy can 

be done by rapidly convergent methods which are now standard. For ordered binary 

compounds it takes the form 

EMad = −α η  +η )Z  Z  / 2d . (6.1) ( 1 2 1 2 

where η  and η  are the numbers of atoms in a formula unit Z1  and Z2  are the charges on1 2

the ions, d is the cation-anion distance and α is the Madelung constant, which has been 

calculated for many common crystal structures. For disordered or strained structures it is 

calculated routinely by standard methods. 
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The remaining repulsive part of the energy is due to overlap of the electronic charge 

distributions and was traditionally calculated by including an empirical pairwise repulsive 

term V pair ( R R ) between the ions, for example of the Born-Mayer or Lennard-Jones′
−


form: 
12 6⎛
 ⎞⎞

⎠ 
σ ⎞

⎠ 
σ⎛

⎝ −
⎛⎝
V pair ( )  =R 4 ⎜⎝
ε .
 (6.2)
⎟⎠
R R 

The parameters of this could be adjusted to fit the experimental cohesive energy and 

lattice parameter.

 The resulting total energy is: 

Z Zji +
1 
2

i j≠ 
∑
V
pair R( )ij , (6.3)
∑
E
=
 1 

2 
i j  Rij≠ 

where I have used the same notation as in eqn.(1.6), since the Madelung energy is just the 

same as the core-core energy in that equation if the core electrons are treated as frozen. 

Successful calculations based on the ionic model have also been made with no adjustable 

Gordon and Kim [15], in which V pair ( ′−R R ) 

obtained by calculating the total energy of the electrons in a dimer, where the electron 

density is assumed to be a superposition of the electron densities of the separate ions at 

parameters by a method refined by is 

R and R′
. This calculation is done with a local density approximation for the kinetic 

energy, besides the exchange and correlation energies. Subsequently, Hartree-Fock 

calculations have been made for the dimers, to remove doubts in the local approximations 

of the Gordon-Kim calculations, which tend to underestimate the repulsive strength of 

the interactions [31]. The pairwise additive nature of the energy of an assembly of closed 

shell atoms is justified by the empirical success of the Lennard-Jones model of rare gases, 

besides its qualified success in calculating the properties of ionic systems. However, non-

pairwise forces do contribute significantly to the elastic constants of ionic materials, or 

materials that are consideret to be mainly ionic, such as MgO. In all cubic materials, non
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pairwise forces are the reason for deviations from the Cauchy relation C = C44. Such12 

deviations are the rule rather than exceptions. 

A further indication of the pairwise additive nature of the energy when closed shells of 

electrons are involved in only one of the species comes from first-principles density 

functional calculations of the energy of noble gas atoms embedded in a free electron gas 

(jellium). It is found that the energy is to a good approximation linear as a function of the 

undisturbed electron density of the jellium [30]. 

So far I have been completely vague about the origin of the repulsive force in (6.3) due to 

overlapping electron densities of the ions. It includes the direct electrostatic interaction as 

well as quantum mechanical exchange. We can however be completely explicit by 

considering the tight binding form of the HKS equations as described in Section 4. 

Within that framework, an ionic model is characterised by having negligible matrix 

elements of the Hamiltonian between different sites. 

There are a number of extensions to the simple ionic model described above, most of 

which are inspired by the original shell model [6], to include the polarisability of the ions, 

particularly the anions. In oxides it has been shown that polarisability at dipolar and 

quadrupolar levels is necessary to understand the energy differences between different 

crystal structures [39]. In addition, in the modern ionic models, an additional parameter is 

associated with the anion to describe its state of compression or expansion; the 

compressibility of anions has also been shown to have a decisive effect on the relative 

energies of structures. Regarding the Cauchy discrepancy, a model with dipole 

polarisable anions is still forced by the cubic symmetry to predict C = C44, becase the12 

dipoles remain zero under homogeneous strains, but the compressible shell model is not 

so constrained. 

A recent interesting development in empirical ionic models is the inclusion of charge 

transfer as a classical variable [35], which seems to be shortcutting the tight-binding 
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treatment of this effect in which a Schrödinger equation has to be solved. This is an area 

of ongoing research. 

In terms of the SCTB model, we can recover an ionic model with dipole and quadrupole 

polarisability: this is the result if the on-site matrix elements linking different orbitals are 

retained, but without any intersite matrix elements. However, this does not seem like a 

useful way in practice to derive an ionic model. A dipolar or quadrupolar charge density 

on an anion arises when electrons on a site redistribute between the available local 

orbitals. There is an effect of this kind as the electrons redistribute between the 2p

orbitals in oxygen for example, but to make it realistic more orbitals must be added. 

However, some of the charge redistribution may be better described by including intersite 

matrix elements and thus modelling variable charge transfer, than by adding more 

orbitals to the basis. Furthermore without any intersite matrix elements we might as well 

implement a classical model of the dipole and quadrupole polarisabilities. 

7. Pair potentials in simple metals

Pair potentials in simple metals were derived back in the sixties without reference to the 

emerging HKS theory. They rely on the concept of pseudopotentials, which is still very 

much alive in the field of first principles HKS calculations. The traditional theory of 

pseudopotentials has been dealt with exhaustively in books [18,16] and review articles, 

and I make only the briefest summary of it here. 

Pseudopotentials 

It was noticed long ago that simple metals such as Na, Mg and Al have electronic 

properties which can be described as if the electrons are nearly free. In the completely 

free electron model there are no discrete atoms and the conduction electrons move on a 

uniform distribution of positive charge; that is the jellium model. In the real metal the 

positive background charge is replaced by discrete ions, with charges 1, 2 and 3 for Na, 

Mg and Al respectively. These are centres of strong Coulomb attraction, consisting of 
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nuclei surrounded by closed shells of core electrons. Nevertheless their effect on the 

conduction electrons can be treated as a weak perturbation to the conduction electrons. 

This paradoxical situation was resolved by the introduction of pseudopotentials. 

Pseudopotentials then took on a far more important role in the understanding and 

computation of electronic structure. 

Electrons moving through the metal are scattered by an effective potential from each ion. 

We can describe how an electron is scattered, which incidentally depends on its energy, 

in different ways. One way is to generate the wave functions that are solutions of the 

Schrödinger equation at some energies for a single free atom or ion. If we draw a sphere 

of radius R  around the ion, and agree only to generate the correct wavefunction outsidec

it, we will have a perfectly adequate description of the atom for the purposes of chemical 

bonding and interatomic forces if R  is small enough. This is so even if we get thec

wavefunction inside R  completely wrong. A wavefunction which is correct outside Rc c 

but fictitious inside R  is called a pseudowavefunction. The forces between atoms cannotc

depend on the antics of electrons within R  if their wavefunction is correctly specified inc

the region outside R , assuming that the total charge density of the ion inside R  isc c

spherically symmetric. In other words if we specify correctly how electrons are scattered 

from spheres of radius R  about each ion, we have provided all the information needed toc

generate the forces between the atoms, at least in principle.


The next step is to notice that the potential within R  which gives rise to a particular
c

wavefunction outside R  is not unique! In fact we can replace the real potential of thec

core, which behaves like −Z r  at short range, by a much weaker potential which has the/

same effect. The weaker potential, which is the pseudopotential of this ion, will not bind 

states to the core, but otherwise it will scatter electrons of higher energy in the same way 

as the real potential. The core radius R  is somewhat arbitrary. Choose it too big and thec

chemical bonding may be poorly modelled. Choose it too small and the pseudopotential 
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is no longer so weak. In practice R  may depend on the angular momentum quantumc

number l of the scattered electron; the pseudopotential itself, as it turned out, has to 

depend on l to construct an accurate model. The construction of pseudopotentials is done 

by solving for the potential in the Schrödinger equation, having specified a 

pseudowavefunction. It is something of an art, which I will not attempt to describe here. 

The important point is that the pseudowavefunction can be chosen to be smooth within 

R , whereas the real wavefunction would have wiggles in it. 

While the angular momentum dependence (non-locality) of pseudopotentials is important 

in practice, it is not relevant to a discussion of the principles, so I shall ignore it the 

following. 

Pseudopotentials are nowadays widely used for first-principles total energy and force 

calculations, because (a) the core electrons are not treated explicitly, saving computation 

time, and (b) the pseudowavefunctions, because they are chosen to be relatively smooth 

within R , can be expanded in much fewer plane waves than would be necessary for thec 

corresponding real wavefunctions. The computational advantage of expanding a 

wavefunction in plane waves are well known [27]; the fewer variables (the expansion 

coefficients) which have to be obtained by a selfconsistent iterative procedure the faster 

the solution can be found. 

The property of pseudopotentials that they weakly scatter electrons is central for deriving 

a pairwise potential description of the bonding, which is computationally the simplest 

description one could want. This is only reasonable for s-p bonded metals; the d-orbitals 

in transition metals cannot be treated as inner core orbitals, because they participate in the 

bonding, neither are they smooth enough for the electrons in d-orbitals to be treated as 

nearly free. 
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Linear screening 

Pair potentials were derived and applied in the sixties and early seventies to describe the 

properties of simple metals [18]. The following is a simple derivation of pairwise 

potentials. 

Given a weak pseudopotential V ps (r), the response of the electron gas to it can be 

described by linear screening as: 

psδn( )  = χ (r,  r  ′ )V (r′ ) dr′ . (7.1) r ∫ 

Due to translational symmetry, the response function has the form: 

χ (r, r ′ ) ≡ χ ( r − r′ ) . (7.2) 

This static response function is fairly well known and is usually referred to in its 

reciprocal space form as the Fourier transform of (7.2), χ ( )q , and it depends on the 
1 

2 3density of the jellium via the Fermi wavevector k = ( 3π n0 ) . In general it can beF 

expressed in terms of the dielectric screening constant ε ( )  asq

2ε 1 = +− 1 4πχ  / q  . (7.3) 

This follows from the definition of the screening constant as the ratio between the 

external and the total potentials, or 

ps / 2 − 1 psV + 4πδn q  = ε ⋅ V . (7.4) 

2The factor 4π / q  is the Fourier transform of the Coulomb potential of an electron. 

The response function χ  can be related to χ 0 , which is that of a hypothetical system of 

non-interacting electrons (Kohn and Sham’s reference system again). This goes as 

follows. Equation (7.1) can be written as 

ps 2δn = χ ( V + ( 1 − G) 4πδ  n / q ) (7.5) 0 

where the terms in brackets are the change in effective potential in the Kohn-Sham sense. 

The quantity G, which depends on q, is included to represent the correction for exchange 
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and correlation. Eliminating δn  from (7.5) and (7.1), which can be wrutten asδn = χδ  V ps , 

gives 

χ = 
− − G 

χ
) 

0

4πχ / q2 . (7.6) 
1 1  0( 

If exchange and correlation are ignored, there is an exact expression for ε( )  which isq

due to Lindhardt: 
2

L q 1
4πkF ⎡ 1 1 + x ⎤ qε ( ) = +  2 ⎢ 2 

+ 
1 − x 

ln ⎥ , x = . (7.7) 
q 4x 1 − x ⎦ 2kF⎣

The change in total energy which is brought about by switching on the ions in jellium can 

be calculated from (3.2). We suppose that the pseudopotentials are switched on 

adiabatically such that the pseudopotential at a certain stage in the process is given by 

λV ps , where the parameter λ is switched continuously from 0 to 1. From (3.2) the energy 

change is 

E 
1 

2 
HKS HKS cc ps cc ps ps1− E0 = E + ∫ dλ∫ (n0 + λδ  n  V  = E  n  V  + 2 ∫δnV  . (7.8) ) + ∫ 0 

0 

To make contact with (2.3) we can write (7.8) in terms of the inverse response function 

defined by 

− 1rV ps ( )  = ∫ χ (r,  r  ′ )δn(r′ )dr′ (7.9) 

giving 

E2 
HKS cc ps 1 − 1E= 0 

HKS + E  n  V  + 2 ∫δn( )χ (r,  r  ′ )δn(r′ ) . (7.10) r+ ∫ 0 

where 

E0 
HKS xc= T [ ]  + E [n0 ] , (7.11) 0 n0 

We can write (2.3) in yet another form, making the kinetic energy explicit and expanding 

it to second order about the uniform electron gas (the first order term vanishes by 

translational symmetry): 
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2δ T psE2 
HKS [ ]  + 2

1 ∫∫δn
δ δ  

δn′ + ∫ nV  = T  n  0 n n′ 
cc 1 H xc [ ]+ E − 2 ∫ n  V  + E n0 (7.12) 0 0  

+ 1 δnKδn′.2 ∫∫ 

Formally minimising with respect to n we get 
2δ T δn′ + V ps + ∫ Kδn′ = 0 . (7.13) ∫ δ δn n′ 

Comparing with (7.9) we identify: 

χ 
2T−1 = − δ − K  . (7.14) 

δ δn n′ 

Furthermore for a hypothetical system of non-interacting electrons, K = 0 . For the non-

interacting system the response function is therefore defined by 
2 

χ0 
−1 = −  

δ T 
(7.15) 

δ δn n′ 

evaluated in the uniform electron gas. 

Hence we find the relationship 

−1 −1χ = χ0 − K  . (7.16) 

This is consistent with the expression (7.6), in Fourier space, in which the kernel K 

appears as the Coulomb interaction reduced by the factor (1-G) for exchange and 

correlation. 

The pair potentials

 The potential V ps in (7.8) is a sum of contributions from each ion: 
ps ps −V = ∑VR (r R) . (7.17) 

R 

Because of the linear nature of the response of the electrons, the electron density can also 

be decomposed in an obvious way into contributions, which screen each ion: 
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psδn( )  = χ(r,  r  ′)V (r′ − R)dr′ = ∑δn (7.18) Rr ∑∫ 
R R 

where 

psr ∫δnR( )  = χ(r,  r  ′)V (r′ − R)dr′ . (7.19) R 

In this way the second order term in the energy can be written as a sum of pairwise 

interactions between the ions: 

ps = 11 δnV 2 ∑VR R′ (7.20) 2 ∫ 
R R′, 

where 

psVR R′ = ∫δn ( )V (r − R′)dr . (7.21) R r R′ 

We can think of this as the electrostatic interaction between one ion and the screening 

charge induced by another. Since the pseudopotentials and the charges they induce are 

spherically symmetric, the potential VR R′  is also a pure pair potential V( R R′− ). The 

term when R R′  is like a self-energy and is insensitive to the crystal structure. These= 

self-energy terms and the rest of the energy in (7.10), which does not depend on the 

crystal structure, nevertheless depend on the density of the material, because they depend 

on n0. The pair potential itself also depends on n0 because the response function depends 

on n0. 

Peculiarities of the pair potentials 

From the previous results, we see that the total energy of a simple metal can be written as 

a function of its average density plus a sum of pairwise functions which are also a 

function of the average density. We can summarise the situation as: 
1E F  n  0 = ( )  + 2 ∑V( −R R′ ;n0 ) . (7.22) 

R R′, 

The linear screening approximation will break down if the density of the material is 

inhomogeneous. An extreme case for illustrative purposes would be a surface. Imagine a 

macroscopic box containing equal volumes of solid and vapour separated by a planar 
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surface. It would be a very poor approximation to use formula (7.22) with n0 as the mean 

density of electrons in the box, because this density would be half as much as the 

appropriate value for the solid. However, the derivation above requires the mean value of 

n0 for the whole system, and there is no obvious way to do better. It has long been known 

that would be essential to do better than this in order to describe the energy not only of 

surfaces but even of single vacancies. An ad hoc solution which may provide a semi-

empirical model would be to keep the form (7.22) but to define the density in some local 

way. This has been discussed in detail recently [12] but not yet implemented in a 

simulation code. 

Before leaving the subject of pair potentials it is worth comparing the total energy in the 

form (7.22) with the embedded atom (EAM) form of the total energy. The formal 

differences are: 

•	 The density, which is an argument of the pseudopotential pair potential, does not 

appear in the EAM pair potential at all. 

•	 The density in the EAM is a local quantity, sometimes thought of as the density 

formed by overlapping the charge densities of atoms at other sites. As discussed 

above, in the pseudopotential approach on the other hand, the density means the 

average density of the whole system, and is therefore non-local, which is unphysical 

for systems which are inhomogeneous. 

•	 The pair potential in the pseudopotential theory is long ranged. This is because of the 

logarithmic singularity in the screening function in reciprocal space at q = 2kF which 

gives rise to oscillations in real space in the screening function and therefore the pair 

potential. The decay of the pair potential to zero can be accelerated by including the 

effect of temperature, which spreads the electrons about the Fermi energy and 

smooths out the singularity in (7.7). However, the decay is still generally slower than 
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the EAM potentials, the functions in which are usually constructed to vanish after 

second or third shells of neighbours. 

Although even for simple metals the pair potentials based on pseudopotententials are out 

of fashion, and EAM potentials are more widely used, my guess is that with the interest 

in light aluminium-lithium-magnesium based alloys, and the possibility of including the 

density dependence in a local way, pseudopotentials may return to favour in special 

cases. They have the great advantage of requiring fewer parameters to be fitted. 
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