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MARZARI:

Welcome, everyone. Lecture 8-- hopefully this will be a somehow simpler class to follow than last class. That was
sort of heavily theoretical. What we are going to do today is really, after two or three slides of recap of what we
have seen in the past lecture, we'll go into really sort of practical application of density functional theory. We'll
first discuss how you set up calculations. That is, what are the parameters, and what are the objects that you
manipulate when you do an electron [INAUDIBLE] calculation?

And then we start seeing a number of examples to give you the feeling for the properties that we can calculate
using density function theory for the accuracy and for the pitfalls you need to be careful with. And in the next
class on Thursday, we'll finish up with more case studies.

So let me actually spend three slides to recap what we have seen in the last lecture. Starting somehow from this,
that, I would say, is the most fundamental one. And it's really rewriting quantum mechanics. So this is really the
Schrodinger equation from the '60s, density functional theory. And this is what it says-- that we don't really need
to solve a many-body differential equation to find that the ground state charge density, and the ground state
energy, and the ground state properties for a system.

But we can actually solve it using a variational principle on the charge density, and the functional that has to be
minimized is written here. That is, for any given charged density and prime, we have, at least in principle, a well
defined functional, and we need to change to vary the charge density and prime. And the minimum value that is
functional will take is actually the ground state energy. Somehow, sort of the weakness of all of this is that
everything is well defined in principle, but it doesn't work in practice.

To remind you what were the sort of conceptual steps, what Hohenberg and Kohn proved from their first theorem
is that, given any charge density and prime-- more or less any charge density and prime, an external potential v
prime is well defined, for which that charge density is going to be the ground state charge density. This was sort
of the inverse part of the first Hohenberg and Kohn theorem. And then, at least in principle, the solution to the
Schrodinger equation corresponding to v prime is well defined.

And we call that c prime. And so one can construct a functional f that is just the expectation value of p-- psi prime
over the many-body kinetic energy operator plus the many-body electron-electron interaction. And so this here is
the well defined, at least in theory, density functional term that is here. And the other term is just the integral of
the external potential times the charge density.

So everything is well defined in principle, and so in this, it's a perfect reformulation of the Schrodinger equation.
The real problem is that we don't have an exact representation of this universal density functional. And so what
Walter Kohn and Lu Sham did was they tried to figure out an approximation to get a universal functional. And so
in the total energy functional, these were-- this was their choice for the approximation. That is what they said-- is,
well, let's try to figure out what are the most relevant physical terms in this functional, and then we'll sort of
leave-- sweep under the rug all the many-body complexity of this problem. And we'll call data an exchange
correlation function.



It is really where the fine detail of your solutions are. And so what they said, in this universal functional, we can
extract terms like the Hartree electrostatic energy, written here, that is a very simple and well defined functional
of the charge density. The sort of second term was the tricky one, because they wanted to figure out what was a
significant contribution to the overall quantum kinetic energy.

And as we have seen, there isn't really a good way to extract kinetic energy that's basically a second derivative
of the wave function-- of curvature of the wave function from a charged density. The sort of most remarkable
case is that of a plane wave. A plane wave of any wavelength gives you a constant charge density, but gives you
a very different second derivative, very different kinetic energy.

And so what Kohn and Sham did-- they introduced a related system of non-interacting electrons that, for a given
charge density n, they would have the same-- sorry, they would have the same ground state energy of our
original problem. But because these are non-interacting electrons, one can define exactly what is the quantum
kinetic energy of this set of non-interacting electrons.

So if you want, this is just a definition, but it turns out to be a definition of the second piece that makes our third
piece here very, very small. So by extracting, selecting the green and the red term, we were left with an
exchange correlational term that, if you want, still contain all the complexity of this problem that it's well defined
in principle, but we don't know how to solve. But for this, then, they applied that the same idea of Thomas and
Fermi. That is, they said, well, maybe we could try to approximate this exchange correlation term with a local
density approximation. That is, we try to construct this energy term by integrating an infinitesimal volume by
infinitesimal volume, and each infinitesimal volume will contribute to this many-body problem and exchange
correlation energy density that is the exchange correlation energy density of the interacting homogeneous
electron gas at that density.

So when, in 1980, Ceperley and Alder first did very complex calculation-- quantum Monte Carlo calculation of the
interacting, but homogeneous electron gas as a function of the density, this functional, at least in principle, was,
for the first time, parameterized over a whole set of density. Often we call that the Perdew-Zunger
parameterization, and so we had finally a working expression.

Once we have a working expression, then the problem of finding the ground state becomes our electronic
structure computational problem. That is how to find the minimum of this functional. Note the very significant
difference with respect to Hartree-Fock. In Hartree-Fock, we had a variational principle, and that led us to our
expression for the energy for the Hartree-Fock equation, in which there was a well defined exchange term. It was
written somehow complicated-- complex, but well defined.

But because it was basically coming from a variational principle, we had the possibility of making Hartree-Fock
better and better by extending our class of search function from Slater determinant to more flexible classes. We
could just take, say, combination of Slater determinant. So Hartree-Fock, in principle, can be made better and
better in a systematic way. And the computational cost that you will pay is horrendous, but it gives you an
avenue.



Density functional theory doesn't give you an avenue. It sort of monolithically states that there is going to be, in
principle, a well defined universal functional, and in the Kohn and Sham sort of the composition that is going to
be in particular one single given exchange correlation functional, but it doesn't give us any sort of systematic
route to find better and better functional.

And that's why for many years there wasn't really much applied work using density functional theory. Sort of in
the early '70s, people started studying very simple system, like the surface of a metal sort of represented as a
step in a free electron gas solution. And then it's only sort of the beginning of the '80s, when we had the
parameterization of LDA from the calculation of Ceperely and Alder, that people could sort of put together an
overall working algorithm. And I've shown you in the last class sort of the phase diagram of silicon, the first time
that we see somehow that this theory is going to give us a very accurate practical result and will be able to give
us the lattice parameters, the bulk models of silicon, just by plotting the energy as a function of the lattice
parameter, or it will give us even the phase transition to high pressure phases of silicon.

What I had written in the previous slide was the total energy in this density functional paradigm, and we had, as
a computational goal now-- and you see how we address this-- the task of minimizing that total energy. And there
are two main routes that we can take. Once the exchange correlation potential is written in an explicit form, this
is a well defined, even if nonlinear, functional of this independent single particle orbitals-- the Kohn and Sham
orbitals of which the charge density is just the sum of the square moduli.

And so we can look at this as a nonlinear minimization problem. We need to find the orbitals that minimize this
expression, or as it often happens, we can write the associated Euler-Lagrange equation. We have a variational
principle so we can take the functional-- the functional differential of that, and that gives us a set of differential
equation that is what we call the Kohn and Sham equation.

And again, they are written here-- sort of not very different. If you look at it, from the Hartree-Fock equations,
there are really the same terms. There is a quantum kinetic energy. And now these are single particle orbitals.
There is a Hartree term. There is an external potential term, and the only difference is in the way the exchange
or exchange correlation term is calculated.

In Hartree-Fock, it was an explicit integral of the orbital. In density functional theory, it's going to be some kind of
complex function of the charge density. And we are going to try and find out what are the eigenstates of this
Hamiltonian, of which the most important part that you need to remember is that this Hamiltonian is what we call
self-consistent. That is, it's an operator that actually depends on its own solution, because you see, what we have
is that the charge density is given by the sum of the square moduli. And the charge density goes into the
expression of the Hartree operator, and goes into the expression of the exchange correlation operator.

So the Hamiltonian, acting on this single particle orbitals, depend on the charge density. And the charge density
is a function of the orbital themselves. And so the problem has become slightly different from your usual
problem. The Schrodinger equation gives you an operator for which you need to find the eigenvectors. Here, you
have an operator for which you find eigenvectors, but then these eigenvectors give you a charge density that,
put back in here, gives you a different operator.



And so exactly like in Hartree-Fock, you have found your ground state solution only once you have become self-
consistent. You have Hamiltonian whose eigenstates give you a charge density that gives you the same
Hamiltonian you had calculated the eigenstates for. And so all the computational approaches to solve the density
functional problem, as those that solve the Hartree-Fock problem are iterative approaches. We can't just find a
solution to an Hamiltonian, but we really need to make that problem self-consistent.

So this is where we concluded in last class. And so now we'll actually go into practical feature of density function
theory. So starting from reminding you that all the quality of your calculation depend ultimately on the quality of
your functional. And for many years, the only functional that was used was really the local density approximation
functional.

In the late '80s and early '90s, people started to develop what are called generalized gradient approximation.
That is, they constructed functionals of the charge density that didn't only depend on the charge density itself,
but also on its gradient. Not in the sense of a Taylor expansion, because a Taylor expansion wouldn't actually
satisfy a number of symmetry properties that we know that the exact exchange correlation functional would do.

And so in this sense, all these new approximation are called generalized gradient approximation. And there is a
little menagerie of acronyms and symbols that really are sort of build up upon the names of the few people that
have really done a lot of work in this field. And so you'll see a lot John Perdew in this, represented by a P, or Axel
Becke in Canada by a B, or Kieron Burke in Rutgers by another B.

So these are some of the most popular functionals. I would say that, by now, sort of almost every one is
standardized on PBE as being the most reasonable and the most accurate advanced approximation beyond local
density. And so this is what we'll use. There are classes of more complex functionals. The quantum chemistry has
done-- community has done a lot of work in looking at hybrid functionals, functional in which a certain percentage
of the exchange correlation functional comes from the density function approximation. It could be LDA, or in most
cases, could be something like PB.

And some amount of Hartree-Fock exchange is mixed in. So they really take Kohn and Sham equation, in which
they exchange correlation term as both a component that is density functional theory-like and a component that
is Hartree-Fock-like. And some of them are, like these two mention here, can work very well, especially for
molecules. Somehow, again, Hartree-Fock comes from atoms and molecules, and it tends to work better in that
limit.

Density functional theory is built on an approximation like the LDA that ultimately comes from the homogeneous
electron gas. So it tends to work better for solids, and as usual, the most difficult cases in which you have a
combination of the two. If you want to study a molecule on a solid surface, then none of these two approaches
work really exceedingly well.

There is a lot of work in developing more complex functionals that tend to work better than any of these that I
have mentioned here. They tend to be exceedingly complex. And so again, there are sort of meta-GGA
functional-- there is a lot of more complex functional that starts to depend not only on the density and on the
gradients, but then maybe on the Laplacian. They might depend on the orbital themselves. So you find terms like
exact exchange functional and so on.



There is a lot of current work, and there isn't a unique solution. And also they tend to be so much more
computationally expensive that, at this stage, I would say they are still limited to a development effort more than
an application effort. But you see, once we have a functional-- and this is even done sort of with standard LDA or
TGA, we can actually describe with remarkable accuracy a number of property for very different materials.

This is a table that Chris Pickard in Cambridge had given me, and you see we have a combination of metals,
semiconductors, oxides, alloys. And what we have here, say, is a list of what is the experimental lattice
parameter, and what is the theoretical prediction. And you see we are sort of in the range in which the errors are
around 1%.

And I would say, for most materials, we are really in this ballpark. The error on a lattice parameter of a material
that doesn't have exotic electronic properties is not a high-Tc superconductor, is not as strongly correlated
electronic material can be expected to be in the range of an error that is between 1% and 2%.

So very, very good. You see predictive power. When we calculate with density functional theory the lattice
parameter of this, we are really not trying to fit any potential at all. When we calculate the lattice parameter of
silver, we are just saying there is going to be an array of Coulombic potentials attracting the electrons with the
atomic number of silver.

And we are looking at how the total energy of this system varies with lattice parameters. And that's why, if you
want, electronic structure approaches tend to be extremely powerful, because they are not fitted. We are just
trying to find the electronic structure solution.

So how does it work in practice? And what I'm going to describe here is what's become known by now as the
total-energy pseudopotential approach. This is really the approach that has been developed to study solid
systems. Again, you have to keep in mind these two communities-- one of sort of solid-state extended studies of
matter, and one of atoms and molecules. And really density functional theory comes from these solid state
approaches. And for reasons that we'll see in a moment that are really related to what we use as a basis set to
describe electrons in a solid, what become apparent very early on is that describing accurately the core electron
in an atom or in a solid would have been exceedingly complex.

If you think at it, whenever you have an atom that forms a molecule or a solid, you have a lot of electrons that
are going to be basically unaffected by the chemical environment. If you take an iron atom, and you put it in iron
as a metal, you put as iron in a transition metal oxide, or you put as iron as a center, say, in a heme grouping--
hemoglobin or myoglobin-- what happens is that the valence electrons or iron will redistribute themselves. But
really, the core electron of irons are so tightly bound to the nucleus by order of magnitude in energy with respect
to the sort of typical energy of valence electrons that they are basically unaffected.

And so in some ways, we really don't want to carry all the computational expense of describing core electrons
when we know that their contribution is going to be a rigid contribution that doesn't change depending on the
chemical environment. The core electrons are certainly important. They are there. They are bound to the nucleus,
and they screen the nucleus charge.



In iron, the 1s electrons-- the two 1s electrons will be so tightly bound to the nucleus that the nucleus doesn't
look to the 2s, or 2p, or 3s, 3p electrons as saving 26 protons. But it really looks like having 24 protons, because
those two 1s electrons screen completely. And so the 2s and 2p really will also spin almost completely the
nucleus from the point of view of the 3s and the 3p.

So we want to find out a way of somehow taking into account the presence of that core electrons, but we don't
want to carry that on in our calculation, because it's very expensive. Not to mention that the spatial variation of
core electrons is going to be extremely sharp. I'll show you an example in a moment.

And so we need a lot of computational information to describe all the sharp wiggles that core electrons will do
around the nucleus. And this problem has been solved that again from the late '70s to the early '80s by what are
called pseudopotential approaches-- in particular, something that is called-- and you'll see this term often-- norm
conserving pseudopotentials that, in many ways, are some of the most complex part of all these electron
structure approaches. And I'll just give you a sort generic flavor of how they approach this problem.

Once we have sort of removed the core electrons from our problems, we still need to find out what are the Kohn
and Sham orbitals that minimize our density functional problem. And as always-- and again, we'll see this in the
next slide-- we need to find an appropriate computational representation of these orbitals. And that is in
particular will expand those orbitals on a basis. That is, we'll represent any possible orbital in a problem as a
linear combination of simple function. This is what is called a basis set.

So in our one dimensional analysis problem, when you have got an arbitrary function, you can expand-- you can
do, say, Fourier analysis. You can expand it in a series of sines and cosines. So the same general problem applies
here. We have arbitrary functions in three dimensions that are our orbitals, and we want to find an appropriate
basis set that describe them. So this basis set needs to be accurate-- that this, needs to be flexible enough to
describe all the possible wiggles of our orbitals, but also need to be computationally convenient. And we'll go in
that in a moment.

So once we have sort of put together these elements, we have sort of our external potential being represented
by this set of nuclei, and somehow, via the pseudopotential approach, also the core electrons. And once we have
decided what is our basic set, we really need to go and solve self-consistently either the Kohn and Sham equation
that you have seen before, or we want to minimize the nonlinear energy functional.

And so there are sort of several steps. Usually, what we'll do is we'll start from a trial solution. Remember that,
since the Hamiltonian depends on the charge density, we need to have a guess to our initial charge density to
even construct our operator, because our operator depends on the ground state charge density. So since that we
don't have the ground state charge density when we start our problem, we need to start with a trial solution.

It could be a trial charge density. Could be trial orbitals. But once we have that, all our operator is well defined.
So we can calculate all the different terms-- the quantum kinetic energy, the Hartree energy, the exchange
correlation terms. And we can try to solve that Hamiltonian from that Hamiltonian.



We'll find new orbitals, and with those new orbitals, we'll calculate the ground state charge density, and we'll
obtain a new Hamiltonian that then will sort of keep iterating, finding new orbitals, new charge density, new
Hamiltonian, until it reaches a fixed point, until we reach self-consistency. Or we can just take the approach of
minimizing the total energy functional to self-consistency. I've written in a more compact way the problem here.
Well, it'll come in a moment.

So let's describe first our first computational approximation in this problem-- that is, the introduction of
pseudopotentials. And as I said, what we want to do is we want to get rid of the electrons in the inner shells, in
the core of the atoms, because they really don't have any contribution to the valence chemical bonds.

They are just there. They're important because they screen the nucleus in a very specific quantum mechanical
term, but they really don't change much when the valence coordination changes. We call that, actually, a frozen
core approximation. That is, we take an atom-- again, we take an iron atom. We solve the density functional
problem for the iron atom. That is, we find a density functional orbital for the 1s, 2s, 2p, 3s, 3p, and so on
orbitals.

For an atom, it's reasonable to do that [INAUDIBLE] solution, even for the core electrons, because you have
spherical symmetry. And the problem is still sort of fairly simple. And at this point, we say, well, from now on, we
are not going to describe the full iron atom, but we are going always to deal with a pseudo iron atom in which the
nucleus and the 1s, 2s, and 2p electrons have been frozen.

And so what really the valence electron need to see is a pseudo nucleus that is not given just by the bare
Coulombic potential, but by the bare Coulombic potential screened by this 1s, and 2s, and 2p electron frozen in
their atomic configuration. And there is a theorem that we won't dwell into by-- from Barth and Gelatt from the
'80s-- that says that this freezing of the core electrons is actually a very good approximation. It doesn't really
matter. It's been verified over and over again.

It Is the last thing we have to worry about. To be precise, the only thing that we have to worry about in density
functional theory, apart from making sure that our technical approximations-- computation approximation are all
accurate is the exchange correlation functional. That is truly the only source of error.

And so here, if you want, I've represented the idea of a pseudo potential. This would have been the standard
solution for an atom. Actually, here I've chosen something simpler than iron. I've chosen aluminum.

And so we would have had a Kohn and Sham set of equations for aluminum in which, again, this term here
contains the Hartree potential, the exchange correlation potential, and external potential that would be just the
bare nuclear potential. We solve this problem. What we find?

Well, we find this hierarchy of states. You see, we find two electrons in the 1s state. We find two electrons in the
2s, two electrons in the 2p. But really, the electrons that do all the chemistry are the 3s and 3p electrons. And
you see the enormous difference in energy scales.

So the binding energy of the 1s electrons to the nucleus is 1,500 electron volts. There is no way, unless you are
sort of throwing X-rays of very high energy to those electrons, that you are going to affect or perturb in any
significant way these 1s electrons. Remember, the energy of a hydrogen bond is 0.29 electrons-- is a fraction of
an electronvolt. So this is four orders of magnitude larger.



So what we want is we want to say this set of electrons are so tightly bound that we don't need to consider how
they change during the formation of a chemical bond. And so what we want to find is a new potential that we call
our pseudopotential, such that the eigenstates in the presence of this pseudopotential give us solutions that
really reproduce exactly the valence electron solution of the original atom.

So you see, what we want is we want to go from 13 over r, the Coulombic potential that is contained in here for
the bare aluminum nucleus, to a new potential that somehow contains both the bare potential of the nucleus, the
screening from the core electrons, and it is constructed according to a well-defined prescription so that the
eigenstates of this new set of Kohn and Sham equation are in order. The lowest eigenstates are actually the
valence eigenstates of our regional problem.

We get the same eigenvalues, and we get, in a way that I'll specify in a moment, the same eigenfunctions. And
so here, it's how we would actually look at this problem. And this is a figure courtesy of Chris [INAUDIBLE].

So you see, what we usually ever in an atom is a Coulombic potential, is this thin red line here. This is the
potential as a function of the radial distance. So it diverges. It goes to minus infinity Coulombically. For
aluminum, it would go as 13 over r.

What are the solutions, say, for the 1s state in this-- sorry, what would be the solution for a valence electron in
this potential? Well, there are going to be all the sort of core electrons, but then a valence electron would look
something like this. It has-- you see this enormous number of oscillations. The reason why those oscillations are
there is that eigenfunction of the Kohn and Sham equation need to be orthogonal to each other.

This is another one of these sort of fundamental quantum mechanical rules. It's basically the Pauli principles. You
can't have two electrons in the same quantum states. And in particular, electrons corresponding to different
quantum states need to be orthogonal to each other. So the integral of the psi star of theta 3s electron in
aluminum times the psi of the 1s electron in aluminum needs to be 0.

And so what it means is that the higher you go, the more wiggles you have. And these wiggles-- that is, these
changes of signs is what allows you orthogonality. So if you have a 1s electron that looks like this, a 1s electron
will have actually sort of exponential to the minus r decaying wave function.

The wave function say-- already the 2s wave function needs to be orthogonal to this electron, and so it needs to
change sign to allow orthogonality when you take the product of these two orbitals. So orthogonality creates a lot
of wiggles, and these wiggles also make the charge density coming from a valence electron more spread towards
the outside of the nucleus.

There is, if you want, another quantum mechanical derived effect in which valence electrons are moved outwards
because of this orthogonality constraint. And so you see this would be, in light blue, the exact wave function for a
valence electron. And what we want to find is a pseudopotential that substitutes for the original bare Coulombic
potential-- and it's written here in sort of-- with a thick red line-- that is constructed so that its ground state wave
function-- that is here in a thick blue-- has the same energy eigenvalue of the valence electron. And in many
ways, it's identical to the original wave function.



And the way we make it identical is actually we only require it to be identical to our original solution outside the
core, because outside of the core of the atom is where chemistry takes place. Chemistry will be here when atoms
bind with other atoms. Inside here, this is the region where core electron sits, and that's a region that will never
overlap with other atoms, again, because there are sort of already these very strongly bound electrons. And to
bring two atoms to have their core regions to overlap requires enormous pressure, hundreds of gigapascals. So
we never really have to worry.

So what we are trying to do here is we want to construct a pseudopotential in thick red such that its ground state
wave functions in thick blue have the same eigenvalues of my original eigenfunctions in thin blue lines. And in
many ways, they represent the same physics and the same chemistry, because they are sort of identical outside
the core. So the thick red line is how we describe an atom. The bare Coulombic potential-- but we also built all the
screening action from the core electrons, and you see the central feature of the pseudopotential is that, if you
want, it becomes repulsive around the center of the atom because we really need to keep the valence electron to
be mostly delocalized in the valence region.

How to build this pseudopotential is actually a complex and somehow dark art. By now, it's been perfected, and
that-- there are basically tables of pseudopotential. So it's a problem you almost never have to worry anymore.
An electronic structure code will have a set of pseudopotential.

And in the course of the years, there have been two flavors that have been developed. The first one that was
actually, I would say, invented at Bell Labs at the end of the '70s by Hamann, Schluter, and Chiang is what are
called norm conserving pseudopotential, of which I'll describe this plot in a moment. There was a sort of
improvement of this norm conserving pseudopotential that are called ultrasoft pseudopotential, developed by
David Vanderbilt at Rutgers University.

They tend to be much less expensive to be-- to use in practical calculation, basically because they are smoother
and smoother, and so they can be described with sort of a smaller basis set, and they tend to be more accurate
over a broader range of coordination and energies. But so the general idea of the pseudopotential from a
different way-- in the previous slide, I showed you how it looks like.

But the genetic idea of a pseudopotential is that we want to create something that contains both the nucleus and
these core electrons. And that basically will act on the valence electron in the same way as the true problem of
core electron explicitly and nucleus. And so what we say is that we want a pseudo potential to scatter an
incoming wave, an incoming electron in the same way as our real set of core electrons in an atom would do that.

And in order to do that very accurately, for this pseudopotential, what we need to do is actually to have the
pseudopotential not just be a single local form, as in the previous slide. It's shown you the sort of red thick line
that was just a unique form of the potential as a function of r, but we actually want our pseudopotential to be
different, depending on the angular momentum component of the electron coming.

So if you have a valence electron, and you have a valence wave function, you can actually say that that valence
wave function will have a 20% angular symmetry of the S type, 30% of the P type, 30% of the D type, and so on
and so forth. And what you do is you act differently on the S component of the wave function, on the P
component of the wave function, on the D component, and so on and so forth.



And so this would be the different radial parts of the pseudopotential, depending on which components they act
on. They all have this overall 1 over r-- or z over r asymptotic trend. But as we get more close to the nucleus,
they start deferring. You see, from the core region inwards, they are all different. And in particular, they are all,
or at least in part, repulsive to again represent this frozen set of electrons.

And this is how the corresponding wave functions would look like. And I've made-- again, this is for an indium
atom, a comparison between, say, the p all electron wave function and the pseudo wave function. And you see
they are identical in the valence region, but in the core region, the true all electron valence wave function is a lot
of oscillation, while the pseudo wave function is much smoother.

And this smoothness means that we can describe this pseudo wave function in sines and cosines with a much
smaller set of waves at different wavelengths then we would have to do if we were to-- if we had the need to
describe all this high frequency oscillation. So at the end, pseudopotential are just there to sort of give us a
chance to avoid describing all these high frequency oscillation of the true valence wave function, and also to give
us the possibility of avoiding the explicit description of the core electrons that really don't change their shape in
going from the atom to the solid.

So now with this, we have an exchange correlation functional. We have this new approximation to the external
potential given by a sort of array of pseudopotential centered on each nucleus. And so we are back to this sort of
self-consistent problem of having to solve these Kohn and Sham differential equations. And again, the way we
want to attack this problem on a computer is by making this problem into a numerical matrix algebra problem.

And the way we go about this is by choosing a busy set and expanding our orbitals in a basis. That is, we say by
saying that any sort of generating function can be thought of as a linear combination of a set of simple function.
Simple function, for which we can do analytical operation-- that is, we are able, say, to calculate the matrix
elements, say, of the kinetic energy between this simple function, or we are able to calculate analytically the
second derivative of this basis function.

Well, by making this ansatz, by saying that a generic wave function is a linear combination of this, our problem
transforms from a differential analysis problem to a problem of finding these coefficients. And again, sort of the
basis set that we'll choose in all sort of our practical computational lab will really be a basis set of sines and
cosines, or what we call plane waves. That is especially adapted and especially useful for the case of solids.

And I've given you an example here. Suppose that what we want to describe is a Gaussian charge density,
something that is a little bit similar to the charge density in an atom. Well, this localized charge density can be
actually expressed fairly accurately as a linear combination of very few sines or cosines with different
wavelengths. You see, I go from this wavelength to smaller and smaller wavelength.

And if I choose my coefficients such that I have constructive interference here in the center and destructive
interference outside, I actually get just by something nine terms here, something that basically describes
perfectly my charge density. So this will be our general sort of approach to the problem. We choose a basis set.
That is, we choose a set of elementary functions that are particularly suited to describe our problem, and for
which we can do all the analysis that we want. That is, we are able to calculate second derivatives.



We are able to calculate matrix elements analytically. And then our computational problem becomes really just a
problem of finding the coefficients. And this is one of those approximations for which you need to test the
accuracy. That is, if you use a very small business set, if you use only 10 plain waves with different wavelengths,
your calculation will be very inexpensive, because you have only 10 coefficients to work with. But it probably
won't be very accurate. If you use one million plane waves, your calculation will be extremely accurate, but it will
be also very expensive.

So this is an approximation, but an approximation-- and this is fundamental-- for which you can control the
accuracy. That is, you just need to make sure that your business set is good enough. And that is something that
you can always check and test. You can't test, apart from comparison with experiment, if your exchange
correlation functional is good enough. That's why we put so much importance, and you should never forget that
really all the accuracy or all the errors that ultimately come in your calculation come from the exchange
correlational function.

All the other computational numerical approximation using pseudopotentials, using a finite basis set are all
approximations that can be tested. And we always assume that a well done electronic structure calculation will
have those under control. You are using enough basis sets. You are using accurate pseudopotential, and so on.

As I said, in solids, for a reason that you'll see in a moment, really the universal basis of choice is that of plane
waves-- basically the e to the I complex exponential, and you'll see why. But in a sort of-- atoms and molecules--
their almost universal basis choice is that a combination of Gaussians. And the reason why Gaussians have been
chosen, and actually why the most famous quantum chemistry code is called Gaussian is that it's very easy to do
the analytical integrals that are present in the exchange term for Hartree-Fock.

So if you want an exchange term for Hartree-Fock, the term means the choice of Gaussian as a particularly
convenient basis set. And again, the product of two Gaussians is a Gaussian, and that's why this is ultimately a
good choice. This is what has developed. At the end, you can still use Gaussians to study solids, or you can use
plane waves to study molecules. And there is even a sort of richer phenomenology. But generally speaking,
these two approaches, that of localized functions in chemistry and of delocalized function in extended systems,
are the basic categories.

We'll start from the point of view of solids, and then you'll see why we actually describe-- we use plain waves to
describe these orbitals. And when you deal with solid, you need to be aware of one of the fundamental
symmetries that the eigenstates of our solution in our periodic potential, as what happens in solids, satisfy. That
is, in particular, the Hamiltonian of a solid is periodically invariant. That's the characteristic of a solid. It's a
regular periodic array of externals pseudopotential that [INAUDIBLE].

So in the language of quantum mechanics, we say that the Hamiltonian commutes with the translational
operator. Translation operator by a vector-- that is, a direct lattice vector. So if you take out cubic system and
you displace, you translate your set of potentials by 1 cubic lattice vector, you have the same operator. That is,
trivially to say that, if you have a regular array of blue dots that is infinite in space, and you displace them, and
the displaced one r crosses, and they have been displaced by this lattice vector r here, and both the red dots and
the blue dots are infinite, well, by displacing the blue dot into the red dots, you have the same identical problem.



When two operator commuting quantum mechanics, what we know is that we can find eigenstates that are
common eigenstates. That is, they are eigenstates both of the first operator, and then on the second operator. I
won't dwell on this in case you are not familiar with parts of this quantum mechanical problem. But what I want
to highlight is that the net result, the fact that we can choose eigenvectors that are common eigenvectors of the
Hamiltonians and of the translation operator, tells us that a genetic eigenvector for aperiodic potential needs to
have a very well defined symmetry and a very well defined symmetric form. And that's sort of summarized in the
Bloch theorem.

And that tells us that an eigenvector will be given by a term-- a function that has the same periodicity of the
crystal times a plane wave-- again, a complex exponential that modulates these periodic parts and that can have
any wavelength. So in other words, what the Bloch theorem here is telling us is that the solutions, the
eigenstates of aperiodic Hamiltonian can have any possible periodicity.

You don't have to think at the electronic eigenstates of aperiodic Hamiltonian as having the same periodicity of
your lattice. But the shape that they have is actually this. That is the product of two function-- one that has any
arbitrary wavelength, and another term-- the so-called periodic part of our orbitals-- that does have the same
periodicity of the lattice.

This can be proven in a variety of ways, and somehow I summarized here why ultimately this is the shape that
the eigenfunction of the Hamiltonian needs to have, basically because if we have a translation and the
Hamiltonian is invariant, the charge density of your solid must also be invariant. And this solution satisfies that,
because if you look at the wave function-- not at r, but r plus a direct lattice vector-- this term will be unchanged
by definition because this term has the periodicity. This term will become e to the ik times scalar product r plus a
direct lattice vector.

But when you look at the charge density-- that is, the square modulus-- this term disappears. So only this
remains in the charge density. And you also want two translations being equivalent to the sum of the other two.
And again, if you translate that by two consecutive lattice vectors, this term doesn't change. And the exponential
of a sum of two lattice vectors is going to be just the product of two exponentials for each lattice vector.

But the fundamental concept here is this-- that the wave function are modulated by this wavelength and we
actually classify them. We do these two quantum numbers. As we classify orbitals in the periodic table, we give
them quantum numbers. We say this is going to be a 3s electron with spin-up.

We are saying what the quantum number nlm and spin are for that electron. In a solid, these are our quantum
numbers. We have a bond index. That is, if you wanted solid equivalent of your energy levels, and it's actually a
discrete integer index that somehow classifies the different eigenvectors, but those eigenvectors can have also
any wavelength.

And so the wavelength of the block orbital is another quantum number that characterize our system. So when
you actually look at a molecule, you think that in terms of energy levels, and you draw an energy diagram in
which you will have a 1s, 2s, 3s energy level. When you think of the possible energy levels from four electrons in
a solid, you'll draw a more complex band diagram in which you will sort of classify levels, not only in terms of
discrete integers, but also in terms of the wavelength.



And so this is what is usually band energy diagram, of which I have an example here. So this is-- would be the
solid equivalent of the energy levels. So for a molecule, you would have a discrete set of energy level. For a solid,
you don't have only a set of discrete quantum numbers n, but you have also a continuous set of wavelengths. So
you have bands that show you how your energy of that eigenvector changes depending on the wavelength of
that eigenvector.

And what I've plotted here is actually the band energy diagram for a free electron in an FCC lattice. What I'm
saying is that, suppose that I'm considering an electron that doesn't feel any potential. What would be its band
energy? Well, it's band energy is actually going to be a parabola.

So it's something that we would represent as this sort of energy, as being really proportional to its wavelength.
That is, again, because a free electron is represented by a plain wave e to the ikr. And so the second derivative
of a plain wave-- that is, the quantum kinetic energy-- is just the k squared term. And if an electron is free, there
is no potential.

So we can think of the energy as a function of wavelength for a free electron to be perfectly parabolic. But now
what we can think for a moment is also how to represent this parabola. In principle, this parabola is a single
parabola infinite as a function of wavelength. But we can also, for a moment, represent the data in an FCC or in
any arbitrary periodic lattice.

So what we could be saying is that suppose that now there is an imaginary geometric structure that is, say, in
real space Bravais lattice with FCC periodicity, and that, in reciprocal space, will correspond to a BCC reciprocal
lattice. And what I want to do is I want to take this parabola and fold it. So instead of having a single parabolic
branch that extends to infinity, every time I hit in Brillouin zone in the reciprocal space a boundary, I fold this
parabola back.

So what I've shown here is really the band energy diagram that is a parabola, supposing for a moment that my
electron leaves in the geometry of an FCC lattice. And this is just to give you the feeling that sometimes
something that looks very complex is just a representation of something very simple in a specific geometry. And
now you see in a moment what happens if we study the electron in a system that truly has the FCC Bravais lattice
in real space. And so it is a BCC Bravais lattice in reciprocal space.

And that is silicon. And you see that the band energy dispersions for electrons in silicon looked, actually very,
very similar to free electrons. You see now for a moment something that you thought it was always extremely
complex, like the band diagram for silicon, turns out to be just a parabola, just a free electron slightly modified.
And you can clearly see all the same pieces, but obviously now these electrons, these valence electrons in silicon
feel the periodic potential.

And so the overall solution is modified. And for those of you familiar with solids, there is a band gap between
valence electrons and conduction electrons. And here, we would be at a gamma point. This would be the lowest
valence band, and here we would have the heavy and the light whole bands for the top valence-- for the top
valence bands.



But what this is telling us is that electrons in a solid really look like free electrons with a little bit of a perturbation
that is enough to transform this parabola into something different. And again, because they are almost free
electrons, and because they have the periodicity-- the periodic part of the Bloch orbitals need to have the
periodicity of the crystal lattice that we are studying-- it will actually be extremely appropriate to use as a basis
set to describe at each k point in the Brillouin. The periodic part of the Bloch orbitals will be extremely convenient
to use plane waves.

And this is the reason, ultimately, why I written here, sort of again reminding some basics of crystallography. I've
taken, say, the zinc blende structure. So again, an FCC lattice here, where these three here in green would be the
primitive lattice vectors of the FCC lattice-- so what I am calling here a1, a2 and a3.

And these three lattices-- three vector lattices in 1/2, 1/2, 0, 0, 1/2, 1/2, and 1/2, 0, 1/2 really represents my
Bravais lattice by repeating blue atoms at any linear combination of three-- of these three vectors. I span all the
infinite blue sublattice of the cations in a zinc blende. And the zinc blende is just a parallel compound of silicon.
It's just that the second atom in the unit cell is different.

And again, by applying translations that are linear combination of these green vectors, I span all the blue lattice.
And silicon would be identical to this. Just the red and the blue would be identical. So having defined direct vector
lattices, the a1, a2, and a3, what I can define is a set of dual vectors that we call reciprocal lattice vectors g1, g2,
and g3 that are such that the scalar product between g1 and g2 is either 1 or 0. And this is the [INAUDIBLE] delta
times 2 pi.

This is a definition. This is what we know is the definition of the reciprocal lattice vector, but what is very
important for us is that these primitive reciprocal lattice vectors are the fundamental descriptor of all the plane
waves that I want to use in describing a solid and the reason for that is that a plane wave written like this
exponential of iGr, where the G here, where this vector is just a linear combination with integer number of my
primitive lattice vectors-- so it's going to be l with l integer G1 times G2 to times n G3. So well defined by the
triplet of numbers l, m, n.

Well, these plane waves, e to the iGr, for any linear combination of g1, g2, and g3 is a function, defined in real
space, that is a periodicity compatible with the periodicity of my direct lattice. So suppose that we were in one
dimension for a moment, and I would have a system that has this periodicity. And remember, the periodic part of
the Bloch orbitals will have the same periodicity in real space.

So maybe the periodic part of that will look something like this, with the same periodicity. Well, then what I want
to do is really expand this periodic function as a linear combination with appropriate coefficient of plane waves
with different wavelengths, but I need to choose these plane waves to all have the same periodicity of the green
lattice.

So my plane waves will only look like this, and this will be the sort of fundamental harmonic if you want. And then
another plane wave could have this periodicity, and so on and so forth, going to higher and higher wavelength.
But the compact mathematical representation of this is in here. That is, given a direct lattice defined by the three
vectors a1, a2, and a3, I can define a reciprocal lattice that is represented by the three vector G1, G1, and G3.
And any linear combination with integer numbers of this G1, G2, and G3 will give me a vector G such that the
complex exponential e to the iGr is actually a periodicity that is compatible with my direct lattice.



That is, the moment I create a direct lattice, there are an infinite number of wavelengths that are not compatible
with the periodicity that I've thrown into my system. Those disappear. I don't want to have anything to deal with.
What I'm left is with a numerable infinity of plane waves that are all compatible with the direct lattice that I'm
choosing from.

And you see now there is a natural way of both choosing plane waves-- they will be here-- and also a natural way
to choose the most important one, because when we choose our basis set for our calculation, we'll start from the
plane waves of longer wavelength. That is, that the blue wavelength that I've plotted here-- and will decrease the
wavelength. That will include more and more plane wave that sort of have finer and finer wavelength, finer and
finer resolution.

And that can be just naturally done by including plane waves with G vectors that have a larger square modulus.
That is the larger this G vector here, the finer the resolution, the higher the wavelength of this plane wave. So
there is truly a natural way to choose basis set now, because, again, what we have is a reciprocal space. And so
we'll have a Brillouin zone in red.

We'll have, if I'm in two dimension, the two G1 and G2 vectors. And so the linear combination G's that I've
described will be given by the infinite, but discrete set of G vectors represented here. And so only the G vectors
denoted here with a cross give rise to a plane wave that has the compatible periodicity with my periodic
boundary conditions.

And so in order to choose a basis set, what I do, I just draw a circle, or in three dimensions, a sphere, and I decide
to include all the vector that sit inside that sphere. And by making that sphere larger and larger, I'm going to
include G vectors that have larger and larger modules that is finer and finer wavelength.

And that is what is called your cutoff in your basis set. So one of the fundamental parameters of your calculation
will be choosing your cutoff for your plane wave basis set-- that is, choosing the radius of that sphere that
includes plane waves with wavelength compatible to the periodic boundary conditions up to a certain resolution.
You make this cutoff sphere larger and larger. You systematically include finer and finer resolutions, so you
become better and better at describing your problem.

And you'll always need to check in your first calculation that your basis set is good enough. That is, by increasing
your cutoff radius, you will not see any significant physical change in the quantities that you are calculating. You
don't see a physical change in the energy as a function of volume. You don't see a change in the forces acting on
atoms, and so on and so forth.

This will take forever. Again, this is not the only choice of basis set, but as you can see, it's really the appropriate
one for periodic systems. And it has sort of a set of nice advantages, of which I would say the most important is
the fact that it's systematic in the sense that you can continuously improve the resolution in your problem by
including more plane waves.

There is a negative side to this that says that it doesn't have any information on how valence electrons should
look like close to a nucleus or close to a core. It requires a very large number of basis elements. So plane wave
calculation tend to have a lot of elements in that. There are a number of other important practical consequences.
In particular, as much as Gaussians, they allow for very easy evaluation of some of the analytical terms that we
need.



So it's very easy to take the gradient of a plane wave or the Laplacian of a plane wave, because basically the
derivative of a complex exponential, if you have e the iGr, the derivative with respect to r of this is just the
function itself times the vector G. This would be the gradient, and the Laplacian-- that is, the second derivative--
is just G squared times the wave function.

And so all these terms are easy to calculate, and there is a sort of more subtle conclusion of this, that if you start
to have a calculation in which atoms move, like a molecular dynamic calculation in which you need to calculate
things like forces, you need to calculate the derivative of the energy with respect to the position of an atom. But
now the energy in itself is an expression that involves linear combination of your basis set.

Well, this basis set does not depend on the position of the atom. So there is no term in the force in the derivative
of the energy with respect to the position that comes from this. If, on the other hand, you are using, say, a
Gaussian that was centered on an atom, a Gaussian centered on an atom would have in there the position of the
atom. And so in order to take the derivative, the force, you would also need to take a derivative of your basis set.
And these are what are called Pulay terms. And that just add another layer of complexity to your calculation.

And again, this is, I think, ultimately, is one of the reasons why in the solid-state community problems like
molecular dynamics and forced relaxation were developed earlier, basically because it's much simpler to
calculate forces. And I want to give you an example on how certain parts of your problem become very easy in
your solution. In particular, remember sort of in the construction of the self-consistent operator from the charge
density we needed to construct the Hartree operator from the charge density integral of n over r minus r prime.

Well, that's basically a solution of what is called the Poisson equation. That is, given a charge density, the
Hartree potential is really coming from the solution of this differential equation. That is, the Laplacian, the second
derivative of the Hartree potential is equal to minus, in atomic units, 4 pi the n electronic charge density taken as
positive here in particular, just to get the signs right.

This is a differential equation. We need to solve it in the course of our self-consistent problem, because
remember, we have sort of diagonalized Hamiltonian. We have gotten some orbitals. From those orbitals, we
have calculated a charge density. But now, from the charge density, we need to calculate the electrostatic
potential. And that's how it works.

Well, this differential equation is actually trivial to solve if, for a moment, you think at a plane wave solution. That
is, you think that your potential-- that is, a function of r is now being written as a linear combination where the
coefficients are called v of g of plane waves. So I'm taking my potential. It's going to have the same periodicity of
the reciprocal lattice, and I'm writing it out as a linear combination of waves. And I'm doing the same for the
charge density here.

So the charge density in itself is going to be given by a linear combination with coefficient G of plane waves. So
this is my expansion in plane waves of this real space functions. And then the algebra is trivial, because to take
the derivative of this red term here, what I obtain is nothing else than the sum over g. Second derivative will
give me r minus g squared v Hartree of G e to the iGr. And that is-- needs to be equal to, well, minus 4 pi sum
over G n of G e to the iGr.



So I have done nothing else than inserting the explicit expansion in plane waves of my potential of my charge
density in the differential equation. And now, well, sort of mathematically I can actually sort of multiply the left
and the right hand term for something like e to the minus iG prime times r. And then I can integrate in the r.

And this is just the mathematical operation that on an orthonormal basis set, as this is, tells me that, in order for
this equality to be satisfied, what I really need to have is that each coefficient corresponding to the same G
vector on the left hand side and on the right hand side is separately equal. So the solution to the Poisson-
Boltzmann equation is trivial, because what I need to have is that G square vG is equal to 4 pi nG. That is, each
coefficient needs to be identical G by G.

So if I have a charge density in real space, I can expand it in plane waves. And this coefficient and nothing else
than a Fourier transform, so a computer is very good, given a periodic function in real space, to give me these
coefficients. And once I have this coefficient n of G, I will know instantly what are the coefficients of the potential
that is the solution of this Poisson equation, because those vG coefficients are really just my charge density
coefficient multiplied by 4 pi and divided by G square.

So you see with plane waves, a lot of the analytical work in a transaction problem becomes trivial. And here, it's
contained one of the trickiest part of electronic structure calculation. And the reason why electronic structure
calculation of large system becomes more and more computationally ill-defined, and more and more difficult to
do as the size of the system becomes larger, because as the size of the system becomes larger, your cell in real
space will become larger. And your Brillouin zone in reciprocal space will become smaller and smaller.

As the three a1, a2, a3 vectors becomes larger, the three dual reciprocal space vector-- G1, G1, and G3--
becomes smaller. So the smallest of the G vector will become smaller and smaller as the supercell grows. And so
then you see that there is an instability, because this component of the Hartree potential is given by this n
coefficient divided by G square.

As your system becomes larger, G square becomes smaller. And so as smaller numerical instability in your
charge density gives you a large instability in your potential. And so you need to be more and more careful. You
need to become more and more careful in your electrostatic solution as the problem becomes larger and larger.

This will take forever to say. I think that I need to stop here for today, and what we'll see in the next class on
Thursday will sort of wrap up the last few technical details that you need to go into the computational lab on
Tuesday, and we'll start discussing case studies for our density functional problem.

As a reminder-- and I've emailed and hope all of you have received my email-- in order to do the computational
lab on Tuesday, it is essential that each and every one of you has an independent personal computer account on
the computer class, because this calculation will become expensive. And we need to run them not on the main a
central node. That will collapse if more than two or three of you run on it. But we need to spool it via queuing
system on the nodes of the cluster that lie beneath the master nose.

This is all for today. Enjoy the snow, and see you on Thursday morning.


