3.14/3.40/22.71 Lecture Summary: Introduction to Steel Case Study

November 25, 2009

Fe-C System Definitions

• Steel: 0.005 to 2 wt% C in Fe

Most carbon steel is less than 1 wt% C

- Greatest tonnage produced in the 0.2 to 0.3 wt% C, used for structural steel in buildings, bridges, ships, etc.
- Greater than 1 wt% C is rare, used for razor blades, cutlery, etc.

• Cast iron: >2 wt% C in Fe

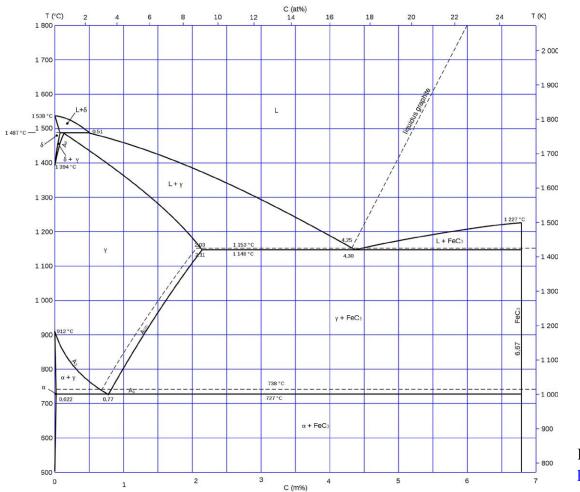
> Usually has other elements added, such as Si

Steel Phases

IIIii

Phase	Term	Structure	Temperature Conditions	Notes
α-Fe	Ferrite	BCC	T<911.5 °C	Solubility is very low
δ-Fe	δ-Ferrite	BCC	1396 °C <t<1538 td="" °c<=""><td>Only seen in transient when melting</td></t<1538>	Only seen in transient when melting
γ-Fe	Austenite	FCC	911.5 °C <t<1396 td="" °c<=""><td>C is an "Austenite stabilizer": add C, γ field widens</td></t<1396>	C is an "Austenite stabilizer": add C, γ field widens
С	Graphite	Hexagonal		Rarely observed, competes with Fe ₃ C, hard to nucleate except in the presence of Si
Fe ₃ C	Cementite	Orthorhombic		Hard ceramic, lower nucleation barrier than for graphite
Fe-C solid solution	Martensite	ВСТ		Metastable, formed by quenching

Phase Diagram



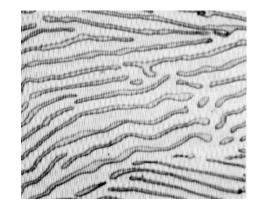

Image from Wikimedia Commons, http://commons.wikimedia.org.

Image removed due to copyright restrictions. Please see Fig. 9.24 in Callister, William D. *Materials Science and Engineering: An Introduction.* Hoboken, NJ: Wiley & Sons, 2007.

Eutectoid Reaction

Pearlite

- α and Fe3C with a lamellar structure
- Grows into the grains from the grain boundaries
- Lamellae promoted by crystallography; closepacked planes line up before and after the eutectoid transition

Pearlite microstructure forms below the eutectoid point

 $\gamma (0.77\%) \rightarrow \alpha (0.22\%) + \text{Fe}_3\text{C} (6.7\%)$

Images removed due to copyright restrictions. Please see Fig. 9.26, 9.27, 9.28 in Callister, William D. *Materials Science and Engineering: An Introduction*. Hoboken, NJ: Wiley & Sons, 2007.

Eutectoid Kinetics

111

Image removed due to copyright restrictions. Please see Fig. 10.14 in Callister, William D. *Materials Science and Engineering: An Introduction*. Hoboken, NJ: Wiley & Sons, 2007. 3.40J / 22.71J / 3.14 Physical Metallurgy Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.