DESIGN TEMPLATE

• ISSUES

- performance, yield, reliability

- ANALYSIS FOR ROBUST DESIGN
 - properties, figure-of-merit
 - thermodynamics, kinetics, process margins
 - process control
- OUTPUT
 - models, options

Optical Amplification

• WDM

- Data Rate: $B_0 > 10 \text{ Gb/s}$

- problem: wide (25THz) channel range

- 1.45<λ<1.65 μm
- dispersion (17 ps/km-nm)
- loss (0.16 dB/km)
- solution
 - dispersion compensation
 - optical amplifier

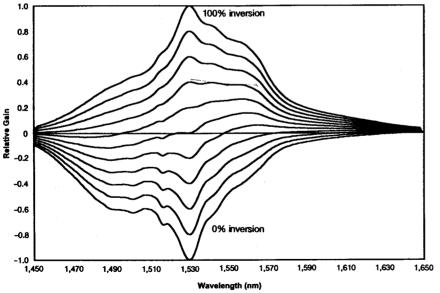
Image removed due to copyright considerations.

(Optoelectronics, Electronic Materials and Devices)

Fiber Amplifiers

Image removed due to copyright considerations.

Graph of wavelength spectrum and windows addressed by different device families.


Optical Amplification Options

- Optical Pumping of Er

 EDFA, insulator host for Er atom (ceramic)
- Optical Pumping with Sensitizer
 - Lowers pump power requirement for Population Inversion (Yb⁺³)
- Electrical Pumping
 - Semiconductor Optical Amplifier (SOA)
 - high noise figure

Er vs SOA

- EDFA
 - atomic transition (Er)
 - 200 nm bandwidth
 - $-25 \text{ dB gain} \leftrightarrow 20 \text{ m}$
 - $-\tau \sim ms \leftrightarrow 4 \text{ dB noise}$

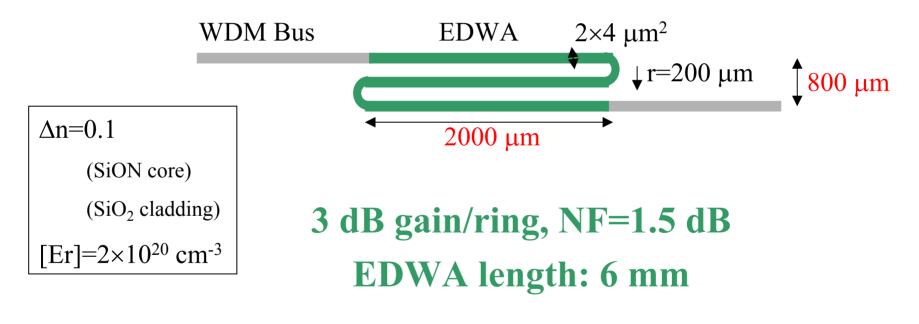
- SOA
 - electronic (InGaAsP)
 - $-\sim 30$ nm bandwidth
 - 36 dB gain \leftrightarrow 350 μ m
 - $-\tau \sim ns \leftrightarrow 12 \text{ dB noise}$

Image removed due to copyright considerations.

(Fundamentals of Photonics, Saleh & Teich)

Source: Figure 3 in Dejneka, M. and B. Samson. "Rare Earth-Doped Fibers for Telecom Applications." Source MRS Bulletin, v24 (9) 1999, pp 39-45.

Courtesy of M. Dejneka and the Materials Research Society. Used with permission.


Er Gain-Limiting Effects

- Increase N \Rightarrow high [Er] \Rightarrow gain-limiting effects
 - excitation
 migration and nonrad. quenching
 - cooperative upconversion
 (10¹⁹-10²⁰ Er/cm³)
 - excited-state absorption

Image removed due to copyright considerations.

Optical Pumping: SiON:Er

- High index contrast ($\Delta n=0.1-0.5$)
 - Gain length 3 dB amplifier

EDWA: ERBIUM DOPED WAVEGUIDE AMPLIFIER

History

- RE ions
 - Long τ : low crosstalk, noise
 - Broadband
 - Symmetric mode
 - $T(\lambda)$, mech. Stability

Image removed due to copyright considerations.

- History
 - 1964: first RE fiber ampl/laser
 - 1987: first EDFA (Mears, Payne-Univ. of Southampton [28 dB, Ar ion pump]
 - 1992: first commercial EDFA

Nonradiative lifetime

- In silica: $\tau_{rad} \approx 5.48 \times 10^3 (g_2/g_1) (\lambda_o^2/f)$ - $f \approx 10^{-5} \cdot 10^{-7} \Rightarrow \tau_{rad} \approx 0.1 \ \mu s \cdot 10 ms$
 - Far IR trans more likely to have faster non-rad.
 rate than visible transition
 - Want host with low phonon energy

High Concentration

Image removed due to copyright considerations. Graph of absorption cross-section vs. wavelength.

- ESA=0.1GSA considered "okay"
 - 980 nm, 1480 nm are free of ESA
- High Rare Earth Clustering
 - Sub-µs cross-relax. vs. >50 µs rad. Decay
- Al co-doping: improve RE solubility
 - Clustering onset: 50 ppm $\text{Er}_2\text{O}_3 \leftrightarrow 10^{18} \text{ cm}^{-3}$
 - 300-500 ppm: gain drop 10% (10¹⁸ cm⁻³)
 - Al alternative: Fluorozirconate (ZBLAN), phosphate fibers

ASE

Image removed due to copyright considerations. Two graphs.

• ASE influences gain profile

Optimizing gain (Pump Mode)

Image removed due to copyright considerations.

Graph of single pass gain vs. core radius.

- Mode order, confinement (single mode~ $\lambda/2n_{core}$!!!)
 - <u>Lesson</u>: trade-off in optimizing gain overlap between signal and pump

– higher confinement: $\gamma \uparrow$, $P_{sat} \downarrow$

Amplifier Length

Image removed due to copyright considerations. Graph of fiber length vs. gain.

- Non-uniform gain profile: $\gamma \rightarrow \alpha$ at x=l : f(ASE)=f(l,P_{pump}) - Get higher gain at 1530 than 1550 nm!
- Record single-pass efficiency: "gain coefficient"=11 dB/mW

Gain Flattening

Image removed due to copyright considerations.

Graph of gain vs. signal wavelength: filter, unfiltered gain, filtered gain.

Why is gain flattening important?
 After (~200 km) ΔP>5-10 dB and BER degraded

Gain Flattening

- Filter after amplifier: Pump efficiency ↓, NF ~same
- Filter before amplifier: Pump eff ~same, NF \uparrow
- Narrowband gain clamping:
 lasing λ locally flattens γ
- Broadband (1530-1610 nm) gain in tellurite fiber

Challenges/Issues for WDM Components

- Wavelength selectable sources
- Optical amplifier gain equalization
- Optical mux/demux
- Flatband, "square" filter response for concatenation
- Reconfigurable wavelength add/drop multiplexers
- Optical cross-connect
- Wavelength alignment of sources, routers, X-connects, receivers
- High integration levels for scalable cross-connects
- Low cost manufacturing and packaging
- Polarization

Images removed due to copyright considerations.

- 1) Er-doped Fiber Amplifier: schematic, energy level diagram, gain performance
- 2) Optical Circuit Configurations: bulk-type + fiber-type evolving to planar-type
- 3) Gain equalization: EDFA + equalizer curves = combined (flatter) curve
- 4) Wavelength Grating Router/DWDM schematic (WGR)
- 5) DWDM: Gratings in MZIs