DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING ## MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139-4307 Donald R. Sadoway John F. Elliott Professor of Materials Chemistry MacVicar Faculty Fellow ## 3.53 ELECTROCHEMICAL PROCESSING OF MATERIALS February 6, 2001 PROBLEM SET 1 due February 15 The e.m.f. of the MnCl₂ formation cell has been measured. For <u>pure</u> liquid MnCl₂ the standard potentials were $\underline{T}(^{\circ}C)$ \underline{E}° (mV) | Э | <u>T (°C)</u> | <u>E° (mV)</u> | |---|--------------------------------|--------------------------------| | | 671 | 1867 | | | 708 | 1852 | | | 743 | 1837 | | | 779 | 1822 | | | 813 | 1803 | | | Mn (s) MnCl ₂ (l) | C, Cl ₂ (g, 1 atm.) | For a solution of 1 mole % MnCl₂, 24.75 mole % NaCl, 74.25 mole % CsCl, the potentials were | <u>T (C°)</u> | <u>E (mV)</u> | |---|---------------| | 754 | 2332 | | 713 | 2342 | | 663 | 2356 | | 689 | 2349 | | 646 | 2360 | | Mn (s) MnCl ₂ - NaCl - CsC | Cl (l) | | | | - (a) Plot E° and E versus T and draw the least-squares lines through the points. - (b) Calculate the temperature dependence of ΔG° in the temperature range 700-800°C for the reaction Mn (s) + Cl₂ (g, 1 atm.) = MnCl₂ (l). What are the values of ΔH° and ΔS° ? - (c) For the 1% MnCl₂ solution in 3:1 CsCl-NaCl determine the partial molar free energy of mixing MnCl₂, ΔG_{MnCl_2} , as a function of temperature. What are the values of ΔH_{MnCl_2} and ΔS_{MnCl_2} in this temperature range? - (d)(i) Calculate a_{MnCl_2} and γ_{MnCl_2} at 650°C and 750°C. Choose pure liquid MnCl₂ as both standard state and reference state for these calculations. - (ii) Does this solution show positive or negative deviation from ideality? - (iii) Calculate ΔS_{MnCl_2} for an ideal "molecular" solution and compare this value with ΔS_{MnCl_2} determined in part (c) of this question. Using the value of ΔS_{MnCl_2} excess comment on the structure of this melt. Keep in mind the value of ΔH_{MnCl_2} . - (e) Plot a theoretical E vs $\log_{10} P_{\text{Cl}_2}$ curve at 700°C when the electrolyte is pure MnCl₂ and chlorine pressure varies from 1 atm. to 10^{-3} atm. - (f) If the pure Mn electrode is exchanged for a Mn alloy, does this change the e.m.f. measured in this cell? If so, how? If not, why is this the case?