
MITOCW | ocw-3.60-29nov2005-pt2-220k_512kb.mp4

PROFESSOR: Any questions before we push bravely onward? OK if there's no question on any of

this I shall clean off the board. And the last thing I wanted to do in connection with

thermal expansion is to examine how the macroscopic linear thermal expansion

coefficient relates to the nature of the potential minimum between-- in the attraction

between-- neighboring atoms. So let me suppose we have a pair of atoms

separated by some distance, d, and there is a cohesive force between them or else

the material would not be in a solid state. And the nature of the potential-- and I'm

going to call the distance between the atoms, x-- and this is going to be the energy.

And I'm measuring now relative to-- let me call this d as I did over here-- so the

energy as a function of d is going to consist of a very short range, repulsive

interaction, that rises very, very rapidly when you attempt to squeeze the atoms any

closer than a fairly small value.

And then there'll be some sort of cohesive energy. And everybody loves to model

ionic compounds because in an ionic compound this cohesive force would be purely

a Coulombic force that would be, in rationalized MKS units, 1 over 4 pi epsilon zero

times the product of the charges and divided by the distance between them. Taking

those two potentials together, and you've all seen this many times before, there is a

minimum in the energy. And then absolute zero-- that is the separation at which this

atom pair would sit-- and this would be the binding energy of that ionic pair. If you

carry this through to get the entire energy of the crystal, you find that the energy of

the crystal goes as 1 minus 1 over-- haven't introduced this term yet, so let's hold

off on that.

What I'm going to do now is to take a look at this potential and expand it around the

equilibrium separation just with an empirical collection of terms. But from the shape

of this well, we can see why the bond length should increase as the energy of the

atomic pair increases. At absolute zero, the separation will be this equilibrium

separation, d zero. But as you increase the temperature and pump vibrational

energy into this pair of atoms, they will get a certain increase in energy. And as a

result, the pair will be able to vibrate between these two limits. Put in some more
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thermal energy by raising the temperature, and the pair will be able to vibrate

between these limits-- larger limits. And so the average position of the atom, the

separation of the atoms, is something that is going to increase with increasing

temperature.

And that is purely a consequence of the asymmetry in this potential well. If this were

a Coulombic bond, we know exactly how to model the attractive part. The repulsive

part is a little harder to model because that is something that's inherently quantum

mechanical. As the ion pair gets close together, the electrons start to perturb each

other's orbitals. And a very common thing to do is to model this as 1 over d to the

sum power n. And n is typically on the order of 8 to 12. So this is something that

rises very, very steeply.

I was once at the Gordon conference where a fist fight almost broke out because

somebody was giving a presentation and started from the beginning by introducing

this model to the potential well. And he says, "As usual, we'll write this as a power

law, 1 over d to the n." And somebody in a front row jumped up and said, "what do

you mean usually? Sensible people use exponentials." And the speaker said, "No,

I'm going to use a power law." That's dumb. Exponentials work better. Power laws,

exponentials, power laws, exponentials. But in point of fact they're both grossly

empirical and one is not better than the other. The algebra changes a little bit, but

people get very, very emotionally attached to their physical models.

AUDIENCE: [INAUDIBLE] law in the exponential.

PROFESSOR: Good, you should've been there to break up the fight. If you'd gotten between them,

you'd have been likely punched in the nose. [INAUDIBLE]

OK so I'm going to use the power law because as we've seen they're the same

thing as exponentials. So now what I'm going to do is expand this in a purely

empirical way-- measuring distance from the minimum of the potential well. So what

I'm going to say is that the potential as a function of x-- and now I won't call it d

because I'm going to measure distance, x, from the minimum in this well. I'm going

to say V is a function of x. There is a well in which the-- which keeps the atoms
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to say V is a function of x. There is a well in which the-- which keeps the atoms

separate. I'll assume that is a parabolic potential well, so it'll go as first some

constant c times x squared. Then the thing that causes thermal expansion is the

asymmetry. And I want the asymmetry to increase the energy more rapidly on the

side of negative x than on the side of positive x. So I'll put in a term, g x cubed. And

I put a negative sign in here because I want it to go up as x becomes negative. That

means the ion pairs are decreasing at separation.

And finally, a very fine touch, if x becomes very large, the potential well should

soften. The edges of this are starting to level out and get lower than the purely

parabolic part for very large separations. So that's what I'll use as a very simple

model for my potential. This is what gives the asymmetry, and this is what gives

softening. And now I'm going to ask, what is the average value of x? The probability

of finding a particular x is going to be proportional to e to the minus V of x over kt.

So I can say that the average value of x is going to be the integral from minus

infinity to plus infinity of the value that I'm trying to find the average of, namely x

times the probability of finding that x. And that's going to e to the minus V of x over

kt. And I will integrate that over x. And then I will normalize by a term which is the

integral of the probability from minus infinity to plus infinity of e to the minus V of x

over kt. So that's a general expression for an average. It's the thing you want to

average times the probability of finding the particular value divided by the integral of

the probabilities.

OK now let me do some very straightforward things and I'm just going to rattle these

off very quickly. We'll expand this in terms of a series of terms. And I'm going to

expand both the numerator and denominator using the approximation that e to the

u is approximately equal to 1 plus u. So the numerator-- x times e to the minus cx

squared over kt. I'm going to take the higher order terms and say that e to the gx

cubed over kt times e to the minus-- this is a minus sign out in front-- times e to the

fx fourth over kt, can be approximated by, since these are very, very small terms, 1

plus g x cubed over kt times 1 plus fx fourth over kt.

So that's going to be, if I put an x e to the minus cx squared, I'm going to have a
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term 1 plus g x cubed over kt, plus f x fourth over kt. And then a very, very

minuscule term, f times g times x to the 7th over kt. And I'm going to throw that out.

If I look at these integrals one at a time, the integral from minus infinity to plus

infinity of x e to the minus cx squared over k t, that's the first term in expansion,

times dx. That's going to be zero. Because for positive x, the thing that we're

integrating is plus. For negative x, the thing that we're integrating has the same

exponential but has a minus sign. So that integral is zero.

So the next term I want to look at is x times gx cubed over kt. And for this I turned to

my handy book of integrals. The integral from zero to infinity of x to the 2n, where

that quantity is even, times e to the minus a x squared dx, is equal to, as you all

know, 1 times 3 times 5 all the way up to 2n minus 1 divided by 2 to the n plus 1

times a to the n times the square root of pi over a. And proof of that the integral is

left as an exercise to the reckless student. Yes?

AUDIENCE: The x cubed [INAUDIBLE].

PROFESSOR: That's why this is a 2n here. So I can say that the x cubed term is--but we don't

have an x cubed term. The next term is going to be equal to x fourth. And this I'm

going to drop because that's going to be x fifth.

So the integral from minus infinity to plus infinity of x to the fourth power times g

over kt times e to the minus cx squared over kt dx. If I use this formula, turns out to

be a very, very simple thing. It turns out to be 3/4 times the square root of pi times g

times kt over c to the 5/2. And kt is to the power 3/2. So that is-- if I throw away the

term in x times x fourth which is odd, that will vanish and I've then thrown out only a

really large term in x to the 7th.

For the denominator, the integral that is there before us is the integral from minus

infinity to plus infinity of e to the minus cx squared over kt times 1 plus g x cubed

over kt. This thing is going to vanish because x is odd. And then I'll have plus fx

fourth over kt. That will not vanish but it's going to be a relatively small term, so I'll

go like that. Which means I just have to integrate this Gaussian factor. And that

turns out to be equal to 2 times 1/2 times square root of pi kT pi times T over c.
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So this is the denominator. And if I take the ratio of those two integrals, I have that

the average value of x will be equal to 3/4 square root of pi times g times kt to the

3/2 over c to the 5/2, divided by the square root of pi times kt over c to the power

1/2. And if I carry through the algebra correctly, this turns out to be 3/4 of g over c

squared times kt. So there is the average distance between this pair of atoms as a

function of temperature in terms of characteristics of the potential. The first thing

that is very gratifying is that the bond length, according to the simple model, should

increase linearly with temperature. So it tells us we would expect things to expand

linearly with temperature which corresponds to reality.

The next thing we'll see is that the amount of expansion goes inversely as the

square. That's a strong dependence-- inversely as the square of the parabolic part

of our potential. That was the c-- c was the coefficient in front of cx squared in our

potential. So the stronger the bond, the smaller the thermal expansion coefficient is

in proportion to the reciprocal of the square of that term. And then finally, the last

important term to survive is g, the asymmetry. And the thermal expansion coefficient

should increase with the first power of the term that describes the asymmetry of the

potential well.

So your intuition would tell you that that's the way the thermal-- linear thermal

expansion coefficient should vary. The interesting thing is that it depends more

strongly on the parameter that gives the parabolic part of the potential well. And

secondly, that it does predict a thermal expansion coefficient that increases-- the

separation that increases with-- in proportion to temperature. And therefore there is

a constant linear thermal expansion coefficient. Now all this is true at elevated

temperatures. At low temperatures, thermodynamics kicks in. And it turns out that

the linear thermal expansion coefficient, as does energies of vibrating atoms, must

go to zero as temperature approaches absolute zero. So a typical variation of the

thermal expansion coefficient with temperature is something that does this. The

same way as-- the same sort of variation as things like heat capacity. And this

temperature in here is on the order of the Debye temperature of the particular

material.
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All right, so much for linear thermal expansion. And I would now like to turn to

something much more interesting. And that is physical properties that involve

property tensors of rank higher than two. One of the important and more interesting

of these is a property called piezoelectricity. Piezo means pressure, so the property

literally means pressure electricity or pressure induced charge. Now what is the

charge? First of all, this does not describe a property where-- if I were to pick up a

chunk of crystal, and I drop it because I just got an electric charge. These are not

mobile charges, these are bound charges. And the reason for the induced charge is

the fact that we are squeezing or stretching an ionic material, and that's moving

charged ions around. So what we're going to do if that process involves motion of

charged ions is to induce a dipole moment per unit volume.

I have a little primer on some quantities in electromagnetic theory and I-- I brought

them with me upstairs to look them over and I forgot to bring them down. But I don't

think we'll need them in what's left of this hour. So let me say that for matter and

bulk, the quantity that is involved in piezoelectricity is the polarization. And

polarization is dipole moment per unit volume. And a dipole moment, to refresh your

memory, is that if I have a positive charge plus q and negative charge minus q

separated by a distance, d. The dipole moment, which I'll indicate by a lowercase p,

has a vector quality and it's equal to the magnitude of one of these charges times

the distance between them.

And we'll define the distance as going from the positive charge to the negative

charge. That's a crazy way of defining a pair of charges of equal but opposite sign.

The reason for defining a quantity like the dipole moment is that this combination of

charge and separation of the charges comes up in all sorts of problems in

electrostatics and electrodynamics. And this is the delight of people who teach

elementary physics. You are given, on the first quiz, a question that says-- calculate

the electric field that is created by a set of dipoles on the Great Court which spell out

MIT.

And we can come up with all sorts of crazy configurations of dipoles and then

calculate the field that they produce. And the field turns out to be something that
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always involves the product of charge and separation in a vector sense. Probably

the best illustration of this would be if I have a dipole charge plus q, charge minus q,

separated by d. And I put it in the electric field. The electric field, which is defined as

the force per unit charge on a positive charge is going to pull the positive charge

this way. And it's going to pull the negative charge this way. And what that's going to

do is to place a torque on the dipole. And that torque is going to be equal to a vector

product of the electric field and a vector. You can express it in terms of the

separation of charges defined in a vector sense going from the positive charge to

the negative charge.

So there's an example of how the torque on a dipole directly involves the product of

charge and the separation between them and the angle between the field and the

dipole. So it's a useful quality and, without further apology, we will use it in our

discussion. Now polarization-- dipole moment per unit volume-- is just going to be

the dipole moment of one dipole pair times the number of them per unit volume.

And that will be a macroscopic measure of polarization.

OK, if we subject a piece of material that contains ions to a stress- so here is a

stress tensor, sigma ij. Let me call it jk. We will create reorientation of the dipoles.

We will have a polarization, a dipole moment per unit volume. This will be a vector

because there will be some net dipole moment per unit volume. And that will just be

the sum of all the little individual dipole moments on the ions-- ion pairs. And if the

stress is not too large, every component of polarization is going to be given by a

linear combination of every one of the components of stress. So we will have an

array of coefficients, d ijk The i goes with the P and the j and k goes with the

elements of stress.

This is something that's called the direct piezoelectric effect. It's the basis of a lot of

every day devices-- pick ups on the old records which nobody uses anymore,

cigarette lighter which nobody uses anymore because everybody's quit smoking--

but worked the cigarette lighter, in some of the more modern incarnations of the

lighter, was the piezoelectric effect. It's important to note that the charges that are

involved in the piezoelectric effect are bound charges. Again you can't get a shock
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by picking up a piece of a strongly piezoelectric material like quartz. Might say then,

well if there's no spark, how could a piezoelectric material in a cigarette lighter

cause the lighter fuel to ignite. The charge doesn't move. How could there be a

spark? How could the lighter fluid be ignited? Anybody got an idea?

Charge can induce current flow in circuit elements that are removed from the

charge. So if you have a little capacitor in the lighter that is near the piezoelectric

element that will develop the charge, you can induce current flow in a circuit as a

result of that capacitor experiencing the electric charge of the piezoelectric induced

charge. And that's how the little piezoelectric cigarette lighters worked. OK, this

stress-- array of stress elements, nine of them, constitutes a tensor of second rank.

Polarization is a vector per unit volume. This is a tensor of first rank. This is a tensor

of second rank. Therefore it follows that this array of coefficients, d ijk will be three

equations involving all nine elements of stress.

So it'll be a total of 27 coefficients in the array. And this array constitutes a tensor of

the third rank. So this is clearly a property tensor which relates a generalized force--

the stress tensor to a generalized displacement, which is the dipole moment per unit

volume. Since this is a property of a crystal, that tensor is subject to symmetry

restrictions. In particular, if there is some direction, cosine scheme Cij, that

corresponds to the operation of a symmetry element, then it follows that if we

evaluate the new tensor elements, d ijk prime in terms of the old elements, that is

going to be a transformation of the form Cil, Cjm, Ckn times all 27 of the original

tensor elements, d lmn. And the l, m, and n are dummy indices, just as with our

second rank tensors. And the ijk are real indices that go with the subscripts on the

particular tensor element.

So there are 27 coefficients. And each transformed element is going to be a sum

therefore of 27 coefficients times-- each times three direction cosines. So each

transform tensor element is going to be given by a sum of 3 times 27 quantities.

And to do the complete transformation would involve doing it 27 times. So 3 times

27 squared is the number of terms that we're going to have to write down to

transform the entire tensor. Not a terribly encouraging prospect unless you use the
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method of direct inspection, namely that the tensor transforms like the product of

the corresponding coordinates. And then it works fairly quickly, particularly for

symmetry transformations, where there are a lot of zeros in the direction cosine

scheme.

So we're going to have to do this for each of the crystal-- crystal point groups. So

we're going to have to do this exercise of 3 times 27 times 27 times the 32 point

groups that exist, which becomes an even more daunting task. But let's do one such

transformation and let me show you that it, in fact, it's going to go fairly easily. So let

me follow the tracks of what we did with second rank tensors and examine the

restrictions imposed by inversion.

OK so the transformation of the axes, as we've seen before, that's produced by 1

bar. That's going to take x1 and change its direction to minus x1. It's going to take

x2 and change its sense to an x2 prime that points in this direction. And take x3 and

change its sense to something that points down here. So that's x3 prime. So the

relation between the axes, before and after inversion, is that x1 prime equals x1--

minus x1-- x2 prime is equal to minus x2. And x3 prime is equal to minus x3. And

we've seen this before. It's deja vu all over again.

So Cij, the direction cosine scheme, is equal to minus 1, 0, 0. 0, minus 1, 0. 0, 0,

minus 1. So let's transform a representative tensor element for a change of axes

that corresponds to that direction cosine scheme. And that's the same as physically

inverting the crystal and demanding that the property be unchanged if that is a

symmetry transformation which leaves the crystal invariant. So if we look at some d

ijk prime, that's going to be Cil, Cjm, Ckn, d lmn, where this is a sum over the index

l, the dummy index m, and the double index n, from 1 to 3.

If we sum over Ci something, the only term of the form Ci something, regardless of

what i is, is going to be the diagonal term Cii, the diagonal direction cosine Cii. In

other words, if i were 1, the only term of the form C1 something that is non-zero, is

C11. If I sum over m, the only term that is non-zero is C, with m equal to j. So this is

going to be Cjj. And if I sum over n, the only term that is going to be left is Ckk. And
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all this will be times d ijk, the single tensor element. Regardless of the values of i, j,

and k, they are all equal to minus 1. So the operation then of inversion, then says

that for the transformed crystal, d ijk prime for any i, j, and k, is going to be equal to

minus d ijk. But if this is a symmetry transformation, the tensor element has to be

the same before and after. And the only number which can be equal to the negative

of itself is zero. So we have, with one swell foop, transformed 27th tensor elements-

- each one of them a sum of 27 elements in the original tensor.

So the conclusion is, if a crystal has the operation of inversion, all d ijk vanish. What

does that mean? Means the property just doesn't exist. So no crystal which has an

inversion center can display piezoelectricity. Which means that none of the 11 Laue

groups can be piezoelectric. And the only point groups for crystals that can be

piezoelectric are the 32 minus 11 equals 21-- and this isn't even one of my good

days-- acentric point groups-- the noncentrosymmetric point groups.

And, these, in principle, can be all different. So we can't get away with just looking at

the restrictions of Laue groups as we did with second rank tensors. We're going to

have to look at every one of the point groups that have no inversion center. And

these can, in principle, be different, and they usually are. Let me give you a

physically-- physical feeling for why the piezoelectric effect cannot exist for a crystal

that has an inversion center in it. Let's suppose we cut a wafer from our single

crystal, regardless of orientation. And we subject it to a compressive stress.

We will see-- and I've got a primer on some simple electrostatics that may be

useful-- that a polarization in the x1 direction manifests itself as a charge per unit

area on the surface and an opposite charge on the other surface. So P1

corresponds, numerically and physically, to a charge per unit area on a surface

that's normal to x1. OK now let's suppose that that crystal has an inversion center in

it. And that means we should be able to invert the crystal and measure exactly the

same charge per unit area. Well, if this is surface a, and this is surface b, we can

imagine ourselves doing the thought experiment in which we invert the crystal.

So this surface becomes b and this surface becomes a. And we apply the same
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sigma along x1-- a compressive stress. It's really doing exactly the same thing that

we were doing before-- inverting the crystal. And now we say that the property has

to stay the same. So now we are demanding that surface b have a positive charge

per unit area, and surface a develop a negative charge per unit area-- completely

the reverse of what happened here. But yet what we're doing is just squeezing the

plate. The crystal can't tell which side is up, which side is down. We're applying the

same compressive effect. So these two distributions of charge are not the same and

can be the same only if that charge is zero. So physically we can see why the

crystal can't be piezoelectric.

If you don't like to invert the crystal-- if you can't do that physically-- one thing we

can do is leave the crystal alone and invert the compressive stress. So this is sigma

top and this is sigma bottom which is exactly equal to it but opposite in direction. If

we invert the stress relative-- relative to the crystal-- then what we've done is to take

sigma top-- leave the crystal alone-- so this is now the sigma that was squishing the

top. Here's the sigma that was squishing the bottom and well, that's clearly doing

the same thing. So inverting the stress, relative to the crystal, is the same as

inverting the crystal relative to the stress. And nothing is supposed to happen but

clearly the sign of the charge is going to be reversed. So that just won't work. The

charge has to disappear.

OK this is the direct piezoelectric effect. It can exist only for crystals that lack an

inversion center. Let me mention some other piezoelectric effects. So we mentioned

that a polarization, given by a third rank tensor times an applied stress, sigma ij, is

the direct piezoelectric photoelectric effect. However, if we have a stress, we also

have a strain. So another piezoelectric effect, which is not dignified with a name, is

that we can apply a stress that creates a given state of strain. And we again, we'll

get a polarization per unit-- a charge per unit area of polarization.

And this is a set of coefficients which are represented by e. And we can write a

tensor relation of this sort-- that components of polarization, charge per unit area,

normal to axis xi, is given by a linear combination of every one of the components of

strain. This is something that is not dignified by any name. And clearly, the
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piezoelectric coefficients, e, have to be related to the piezoelectric coefficients, d, by

the elastic constant somehow-- unless we are doing the same thing. We've got to

create a stress, operationally, in order to create the strain. So a stress creates a

strain. And that has to describe the same polarization if we've done the same thing.

So the e's and the d's have to be related.

Another piezoelectric effect involves a applying an electric field. And if we apply an

electric field, we will in general create a strain. This direct piezoelectric effect is

three equations that involve a linear combination of nine elements of stress. This

piezoelectric relation here is going to involve writing an equation for each of nine

elements of strain. And there would be three components of the electric field vector.

So it'll be three this way. So both of these relations involve 27 elements.

So again we're going to have a third rank tensor because the electric field is a

vector-- strain is a tensor. And now the mind boggling thing that I will leave you with

is exactly the same set of coefficients, d ij describe both effects. And this effect is

given a special name. This is called the converse piezoelectric effect. And it's not at

all clear how strain, in terms of electric field, should be described in terms of the

same array of 27 numbers as polarization per unit volume in terms of stress. And

that is an argument that is based on thermodynamics. So that's a good place to

quit. We'll have some fun in looking at a few symmetry restrictions imposed on the

acentric point groups, 21 of them. We're not going to do all 21. If you know how to

do one or two, and marvel over the results, you can do them all.

But one thing that we'll be asking is how can we represent the variation of the

piezoelectric effect with orientation of the crystal. And the answer is we can't. We

can't. Because what is the direction of what we're doing? There are nine elements

of stress, not just three components of a vector which defines an orientation. There

are nine parameters here. And there are three components to the charge per unit

area-- that's a vector. So all that one can do for these higher ranked tensors is to

look for a special, generalized force. And then perhaps for a very special form of

that generalized force, that tensor, look at how the polarization changes. But you're

going to have to look at six different representation surfaces-- each one which will
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describe a different piezoelectric effect. So this will become less simple in many

respects. But correspondingly, more interesting because we'll have some really wild,

mind boggling representation surfaces for piezoelectric effects. OK so we'll stop

there and resume on Thursday. And I'll let you get back to the MRS if that's where

you earlier today.
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